EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 3CQ
When a mass is placed on top of a vertical spring, the spring compresses and the mass moves downward. Analyze the system in terms of its mechanical energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
EBK PHYSICS
Ch. 8.1 - 1. In Figure 8-8, the work done by a conservative...Ch. 8.2 - 1. The work done by a conservative force on a...Ch. 8.3 - A system with only conservative forces acting on...Ch. 8.4 - 4. A system is acted on by more than one force,...Ch. 8.5 - A system consists of an object moving along the x...Ch. 8 - Is it possible for the kinetic energy of an object...Ch. 8 - If the stretch of a spring is doubled, the force...Ch. 8 - When a mass is placed on top of a vertical spring,...Ch. 8 - If a spring is stretched so far that it is...Ch. 8 - An object is thrown upward to a person on a roof....
Ch. 8 - It is a law of nature that the total energy of the...Ch. 8 - Discuss the venous energy conversions that occur...Ch. 8 - Discuss the nature of the work done by the...Ch. 8 - It the force on an object is zero, does that mean...Ch. 8 - When a ball is thrown upward, its mechanical...Ch. 8 - When a ball is thrown upward, it spends the same...Ch. 8 - The work done by a conservative force is indicated...Ch. 8 - 2. Calculate the work done by gravity as a 3.2-kg...Ch. 8 - Calculate the work done by friction as a 37-kg box...Ch. 8 - Predict/Calculate A 2.8-kg block is attached to a...Ch. 8 - Predict/Calculate (a) Calculate the work done by...Ch. 8 - In the system shown in Figure 8-26, suppose the...Ch. 8 - Predict/Explain Ball 1 is thrown to the ground...Ch. 8 - A mass is attached to the bottom of a vertical...Ch. 8 - Find the gravitational potential energy of an...Ch. 8 - A student lifts a 1.42-kg book from her desk to a...Ch. 8 - At the local ski slope, an 82.0-kg skier rides a...Ch. 8 - BIO The Wing of the Hawkmoth Experiments performed...Ch. 8 - Predict/Calculate A vertical spring stores 0.962 J...Ch. 8 - Pushing on the pump of a soap dispenser compresses...Ch. 8 - BIO Mantis Shrimp Smasher A peacock mantis shrimp...Ch. 8 - Predict/Calculate The work required to stretch a...Ch. 8 - A 0.33-kg pendulum bob is attached to a string 1.2...Ch. 8 - Prob. 18PCECh. 8 - Prob. 19PCECh. 8 - For an object moving along the x axis, the...Ch. 8 - At an amusement park, a swimmer uses a water side...Ch. 8 - Prob. 22PCECh. 8 - A skateboarder at a skate park rides along the...Ch. 8 - Three balls are thrown upward with the same...Ch. 8 - A 0.21-kg apple falls from a tree to the ground,...Ch. 8 - Predict/Calculate A 2.9-kg block slides with a...Ch. 8 - A 0.26-kg rock is thrown vertically upward from...Ch. 8 - A 1 40-kg block sides with a speed of 0.950 m/s on...Ch. 8 - A 5.76-kg rock is dropped and allowed to fall...Ch. 8 - Predict/Calculate Suppose the pendulum bob m...Ch. 8 - The two masses in the Atwoods machine shown in...Ch. 8 - In the previous problem, suppose the masses have...Ch. 8 - Prob. 33PCECh. 8 - Catching a wave, a 77-kg surfer starts with a...Ch. 8 - At a playground, a 19-kg child plays on a slide...Ch. 8 - Starting at rest at the edge of a swimming pool, a...Ch. 8 - A 22,000-kg airplane lands with a speed of 64 m/s...Ch. 8 - A78-kg skateboarder grinds down a hubba ledge that...Ch. 8 - You ride your bicycle down a hill, maintaining a...Ch. 8 - A 111-kg seal at an amusement park slides from...Ch. 8 - A 1.9-kg rock is released from rest at the surface...Ch. 8 - A 1250-kg car drives up a hill that is 16.2 m...Ch. 8 - The Outlaw Run roller coaster in Branson,...Ch. 8 - A 1.80-kg block slides on a rough horizontal...Ch. 8 - Figure 8-34 shows a potential energy curve as a...Ch. 8 - An object moves along the x axis, subject to the...Ch. 8 - A 1.34-kg object moves along the x axis, subject...Ch. 8 - The potential energy of a particle moving along...Ch. 8 - A block of mass m = 0.88 kg is connected to a...Ch. 8 - A ball of mass m = 0.75 kg is thrown straight...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - Figure 8-35 depicts the potential energy of a...Ch. 8 - CE You and a friend both solve a problem involving...Ch. 8 - CE A particle moves under the influence of a...Ch. 8 - A sled slides without friction down a small,...Ch. 8 - A 74 Kg skier encounters a dip in the snows...Ch. 8 - Running Shoes The soles of a popular make of...Ch. 8 - Nasal Strips The force required to flex a nasal...Ch. 8 - The water slide shown in Figure 8-37 ends at a...Ch. 8 - A skateboarder starts at point A in Figure 8-38...Ch. 8 - The Crash of Skylab NASAs Skylab, the largest...Ch. 8 - BIO Bird Tendons Several studies indicate that the...Ch. 8 - In the Atwoods machine of Problem 31, the mass m2...Ch. 8 - A 6.60-kg block slides with an initial speed of...Ch. 8 - Jeff of the Jungle swings on a 7.6-m vine that...Ch. 8 - A 1.9-kg block slides down a frictionless ramp, as...Ch. 8 - Suppose the ramp in Figure 8-40 is not motionless....Ch. 8 - BIO Compressing the Ground A running track at...Ch. 8 - BIO A Fleas Jump The resilin in the body of a flea...Ch. 8 - Predict/Calculate Tension at the Bottom A ball of...Ch. 8 - An ice cube is placed on top of an overturned...Ch. 8 - Predict/Calculate The two blocks shown in Figure...Ch. 8 - Predict/Calculate Loop-the-Loop (a) A block of...Ch. 8 - Figure 8-45 shows a 1.75-kg block at rest on a...Ch. 8 - In Figure 8-45 a 1.2-kg block is held at rest...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - BIO The Flight of the Dragonflies Of all the...Ch. 8 - Predict/Calculate Referring to Example 8-12...Ch. 8 - Referring to Example 8-12 Suppose the block is...Ch. 8 - Referring to Example 8-17 suppose we would like...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why does a one-step growth curve differ in shape from that of a bacterial growth curve?
Brock Biology of Microorganisms (15th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
41. A 0.300 kg oscillator has a speed of 95.4cm/s when its displacement is 3.00cm and 71.4 cm/s when its displ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
The genotype of F1, individuals in a tetrahybrid cross is AaBbCcDd. Assuming lndependent assortment of these fo...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a linear spring, as in Figure 7.7(a), with mass M uniformly distributed along its length. The left end of the spring is fixed, but the right end, at the equilibrium position x=0 , is moving with speed v in the x-direction. What is the total kinetic energy of the spring? (Hint: First express the kinetic energy of an infinitesimal element of the spring dm in terms of the total mass, equilibrium length, speed of the right-hand end, and position along the spring; then integrate.)arrow_forwardThe Flybar high-tech pogo stick is advertised as being capable of launching jumpers up to 6 ft. The ad says that the minimum weight of a jumper is 120 lb and the maximum weight is 250 lb. It also says that the pogo stick uses a patented system of elastometric rubber springs that provides up to 1200 lbs of thrust, something common helical spring sticks simply cannot achieve (rubber has 10 times the energy storing capability of steel). a. Use Figure P8.32 to estimate the maximum compression of the pogo sticks spring. Include the uncertainty in your estimate. b. What is the effective spring constant of the elastometric rubber springs? Comment on the claim that rubber has 10 times the energy-storing capability of steel. c. Check the ads claim that the maximum height a jumper can achieve is 6 ft.arrow_forwardA childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.69arrow_forward
- Answer yes or no to each of the following questions. (a) Can an objectEarth system have kinetic energy and not gravitational potential energy? (b) Can it have gravitational potential energy and not kinetic energy? (c) Can it have both types of energy at the same moment? (d) Can it have neither?arrow_forwardA block of mass 0.500 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x (Fig. P7.79). The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point , the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The blocks speed at the bottom of the track is = 12.0 m/s, and the block experiences an average friction force of 7.00 N while sliding up the track. (a) What is x? (b) If the block were to reach the top of the track, what would be its speed at that point? (c) Does the block actually reach the top of the track, or does it fall off before reaching the top?arrow_forwardA 5.00-kg block is set into motion up an inclined plane with an initial speed of i = 8.00 m/s (Fig. P7.21). The block comes to rest after traveling d = 3.00 m along the plane, which is inclined at an angle of = 30.0 to the horizontal. For this motion, determine (a) the change in the blocks kinetic energy, (b) the change in the potential energy of the block-Earth system, and (c) the friction force exerted on the block (assumed to be constant), (d) What is the coefficient of kinetic friction? Figure P7.21arrow_forward
- A horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P7.55. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P7.55arrow_forwardA roller-coaster car of mass 1.50 103 kg is initially at the top of a rise at point . It then moves 35.0 m at an angle of 50.0 below the horizontal to a lower point . (a) Find both the potential energy of the system when the car is at points and and the change in potential energy as the car moves from point to point , assuming y = 0 at point . (b) Repeat part (a), this time choosing y = 0 at point , which is another 15.0 m down the same slope from point .arrow_forwardConsider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).arrow_forward
- A block of mass 500 g is attached to a spring of spring constant 80 N/m (see the following figure). The other end of the spring is attached to a support while the mass rests on a rough surface with a coefficient of friction of 0.20 that is inclined at angle of 300 . The block is pushed along the surface till the spring compresses by 10 cm and is then released from rest. (a) How much potential energy was stored in the block-spring-support system when the block was just released? (b) Determine the speed of the block when it crosses the point when the spring is neither compressed nor stretched. (c) Determine the position of the block where it just comes to rest on its way up the incline.arrow_forwardJane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with person-eating crocodiles to save Tarzan from danger. She must swing into a wind exerting constant horizontal force F, on a vine having length L and initially making an angle with the vertical (Fig. P7.81). Take D = 50.0 m, F = 110 N, L = 40.0 m, and = 50.0. (a) With what minimum speed must Jane begin her swing to just make it to the other side? (b) Once the rescue is complete, Tarzan and Jane must swing back across the river. With what minimum speed must they begin their swing? Assume Tarzan has a mass of 80.0 kg.arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY