Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 35P
GO In Fig. 8-42, a block of mass m = 3.20 kg slides from rest a distance d down a frictionless incline at angle θ = 30.0° where it runs into a spring of spring constant 431 N/m. When the block momentarily stops, it has compressed the spring by 21.0 cm. What are (a) distance d and (b) the distance between the point of the first block–spring contact and the point where the block’s speed is greatest?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A box of mass 10 kg is released with a speed of 1 m/s at the top of the frictionless
hill. The height of the hill is 1 m. When the box reaches the bottom of the hill it
compresses a massless spring with spring constant 400 N/m as shown in the figure.
The part of the horizontal surface of length 50 cm is rough with coefficient of kinetic
friction 0.1. Find the maximum compression of the spring.
5.
55 ILW In Fig. 8-51, a block of mass m = 2.5 kg slides head on
into a spring of spring constant k = 320 N/m. When the block
stops, it has compressed the spring by 7.5 cm. The coefficient of ki-
netic friction between block and floor is 0.25. While the block is in
contact with the spring and being brought to rest, what are (a) the
work done by the spring force and (b) the increase in thermal en-
ergy of the block-floor system? (c) What is the block's speed just
as it reaches the spring?
Fig. 8-51 Problem 55.
An elevator of mass 1000 kg rests at a level 5 m above the base of an elevator
shaft. It is raised to 200 m above the base of the shaft, where the cable holding
it breaks. The elevator falls freely to the base of the shaft and strikes a strong
spring. The spring is designed to bring the elevator to rest and, by means of a
catch arrangement, to hold the elevator at the position of maximum spring
compression. Assuming the entire process to be frictionless, and taking g =
9.8m/s2. calculate:
a.
b.
C.
d.
e.
The potential energy of the elevator in its initial position relative to the base
of the shaft.
f.
The work done in raising the elevator
The potential energy of the elevator in its highest position relative to the
base to the shaft
The potential energy of the compressed spring
The energy of the system consisting of the elevator and spring:
i. at the start of the process, ii. When the elevator reaches its maximum height iii.
Just before the elevator strikes the spring iv. After the…
Chapter 8 Solutions
Fundamentals of Physics Extended
Ch. 8 - In Fig. 8-18, a horizontally moving block can take...Ch. 8 - Figure 8-19 gives the potential energy function of...Ch. 8 - Figure 8-20 shows one direct path and four...Ch. 8 - In Fig. 8-21, a small, initially stationary block...Ch. 8 - In Fig. 8-22, a block slides from A to C along a...Ch. 8 - In Fig. 8-23a, you pull upward on a rope that is...Ch. 8 - The arrangement shown in Fig. 8-24 is similar to...Ch. 8 - In Fig. 8-25, a block slides along a track that...Ch. 8 - Figure 8-26 shows three situations involving a...Ch. 8 - Figure 8-27 shows three plums that are launched...
Ch. 8 - When a particle moves from f to i and from j to i...Ch. 8 - SSM What is the spring constant of a spring that...Ch. 8 - In Fig. 8-29, a single frictionless roller-coaster...Ch. 8 - You drop a 2.00 kg book to a friend who stands on...Ch. 8 - Figure 8-31 shows a ball with mass m = 0.341 kg...Ch. 8 - SSM In Fig. 8-32, a 2.00 g ice flake is released...Ch. 8 - In Fig. 8-33, a small block of mass m = 0.032 kg...Ch. 8 - Figure 8-34 shows a thin rod, of length L = 2.00 m...Ch. 8 - A 1.50 kg snowball is fired from a cliff 12.5 m...Ch. 8 - GO In Problem 2, what is the speed of the car at a...Ch. 8 - a In Problem 3, what is the speed of the book when...Ch. 8 - SSM WWW a In Problem 5, what is the speed of the...Ch. 8 - a In Problem 8, using energy techniques rather...Ch. 8 - SSM A 5.0 g marble is fired vertically upward...Ch. 8 - a In Problem 4, what initial speed must be given...Ch. 8 - SSM In Fig. 8-35, a runaway truck with failed...Ch. 8 - A 700 g block is released from rest at height h0...Ch. 8 - In Problem 6, what are the magnitudes of a the...Ch. 8 - a In Problem 7, what is the speed of the ball at...Ch. 8 - GO Figure 8-36 shows an 8.00 kg stone at rest on a...Ch. 8 - GO A pendulum consists of a 2.0 kg stone swinging...Ch. 8 - Figure 8-34 shows a pendulum of length L = 1.25 m....Ch. 8 - A 60 kg skier starts from rest at height H = 20 m...Ch. 8 - ILW The string in Fig. 8-38 is L = 120 cm long,...Ch. 8 - A block of mass m = 2.0 kg is dropped from height...Ch. 8 - At t = 0 a 1.0 kg ball is thrown from a tall tower...Ch. 8 - A conservative force F=(6.0x12)i N, where x is in...Ch. 8 - Tarzan, who weighs 688 N, swings from a cliff at...Ch. 8 - Figure 8-41a applies to the spring in a cork gun...Ch. 8 - SSM WWW In Fig. 8-42, a block of mass m = 12 kg is...Ch. 8 - GO A 2.0 kg breadbox on a frictionless incline of...Ch. 8 - ILW A block with mass m = 2.00 kg is placed...Ch. 8 - In Fig. 8-45, a chain is held on a frictionless...Ch. 8 - GO In Fig. 8-46, a spring with k = 170 N/m is at...Ch. 8 - GO A boy is initially seated on the top of a...Ch. 8 - GO In Fig. 8-42, a block of mass m = 3.20 kg...Ch. 8 - GO Two children are playing a game in which they...Ch. 8 - A uniform cord of length 25 cm and mass 15 g is...Ch. 8 - Figure 8-49 shows a plot of potential energy U...Ch. 8 - GO Figure 8-50 shows a plot of potential energy U...Ch. 8 - The potential energy of a diatomic molecule a...Ch. 8 - A single conservative force Fx acts on a 1.0 kg...Ch. 8 - A worker pushed a 27 kg block 9.2 m along a level...Ch. 8 - A collie drags its bed box across a floor by...Ch. 8 - A horizontal force of magnitude 35.0 N pushes a...Ch. 8 - SSM A rope is used to pull a 3.57 kg block at...Ch. 8 - An outfielder throws a baseball with an initial...Ch. 8 - A 75 g Frisbee is thrown from a point 1.1 m above...Ch. 8 - In Fig. 8-51, a block slides down an incline. As...Ch. 8 - SSM ILW A 25 kg bear slides, from rest, 12 m down...Ch. 8 - A 60 kg skier leaves the end of a ski-jump ramp...Ch. 8 - During a rockslide, a 520 kg rock slides from rest...Ch. 8 - A large fake cookie sliding on a horizontal...Ch. 8 - GO In Fig. 8-52, a 3.5 kg block is accelerated...Ch. 8 - A child whose weight is 267 N slides down a 6.1 m...Ch. 8 - ILW In Fig. 8-53, a block of mass m = 2.5 kg...Ch. 8 - You push a 2.0 kg block against a horizontal...Ch. 8 - GO In Fig. 8-54, a block slides along a track from...Ch. 8 - A cookie jar is moving up a 40 incline. At a point...Ch. 8 - A stone with a weight of 5.29 N is launched...Ch. 8 - Prob. 60PCh. 8 - When a click beetle is upside down on its back, it...Ch. 8 - GO In Fig. 8-55, a block slides along a path that...Ch. 8 - The cable of the 1800 kg elevator cab in Fig. 8-56...Ch. 8 - GO In Fig. 8-57, a block is released from rest at...Ch. 8 - GO A particle can slide along a track with...Ch. 8 - A 3.2 kg sloth hangs 3.0 m above the ground. a...Ch. 8 - SSM A spring k = 200 N/m is fixed at the top of a...Ch. 8 - From the edge of a cliff, a 0.55 kg projectile is...Ch. 8 - SSM In Fig. 8-60, the pulley has negligible mass,...Ch. 8 - GO In Fig. 8-38, the string is L = 120 cm long,...Ch. 8 - SSM In Fig. 8-51, a block is sent sliding down a...Ch. 8 - Two snowy peaks are at heights H = 850 m and h =...Ch. 8 - SSM The temperature of a plastic cube is monitored...Ch. 8 - A skier weighing 600 N goes over a frictionless...Ch. 8 - SSM To form a pendulum, a 0.092 kg ball is...Ch. 8 - We move a particle along an x axis, first outward...Ch. 8 - SSM A conservative force Fx acts on a 2.00 kg...Ch. 8 - At a certain factory, 300 kg crates are dropped...Ch. 8 - SSM A 1500 kg car begins sliding down a 5.0...Ch. 8 - In Fig. 8-65, a 1400 kg block of granite is pulled...Ch. 8 - A particle can move along only an x axis, where...Ch. 8 - For the arrangement of forces in Problem 81, a...Ch. 8 - SSM A 15 kg block is accelerated at 2.0 m/s2 along...Ch. 8 - A certain spring is found not to conform to Hookes...Ch. 8 - SSM Each second, 1200 m3 of water passes over a...Ch. 8 - GO In Fig. 8-67, a small block is sent through...Ch. 8 - SSM A massless rigid rod of length L has a ball of...Ch. 8 - A 1.50 kg water balloon is shot straight up with...Ch. 8 - A 2.50 kg beverage can is thrown directly downward...Ch. 8 - A constant horizontal force moves a 50 kg trunk...Ch. 8 - GO Two blocks, of masses M = 2.0 kg and 2M, are...Ch. 8 - A volcanic ash flow is moving across horizontal...Ch. 8 - A playground slide is in the form of an arc of a...Ch. 8 - The luxury liner Queen Elizabeth 2 has a...Ch. 8 - A factory worker accidentally releases a 180 kg...Ch. 8 - If a 70 kg baseball player steals home by sliding...Ch. 8 - A 0.50 kg banana is thrown directly upward with an...Ch. 8 - A metal tool is sharpened by being held against...Ch. 8 - A swimmer moves through the water at an average...Ch. 8 - An automobile with passengers has weight 16 400 N...Ch. 8 - A 0.63 kg ball thrown directly upward with an...Ch. 8 - The summit of Mount Everest is 8850 m above sea...Ch. 8 - A sprinter who weighs 670 N runs the first 7.0 m...Ch. 8 - A 20 kg object is acted on by a conservative force...Ch. 8 - A machine pulls a 40 kg trunk 2.0 m up a 40 ramp...Ch. 8 - Prob. 106PCh. 8 - The only force acting on a particle is...Ch. 8 - In 1981, Daniel Goodwin climbed 443 m up the...Ch. 8 - A 60.0 kg circus performer slides 4.00 m down a...Ch. 8 - A 5.0 kg block is projected at 5.0 m/s up a plane...Ch. 8 - A 9.40 kg projectile is fired vertically upward....Ch. 8 - A 70.0 kg man jumping from a window lands in an...Ch. 8 - A 30 g bullet moving a horizontal velocity of 500...Ch. 8 - A 1500 kg car starts from rest on a horizontal...Ch. 8 - A 1.50 kg snowball is shot upward at an angle of...Ch. 8 - A 68 kg sky diver falls at a constant terminal...Ch. 8 - A 20 kg block on a horizontal surface is attached...Ch. 8 - Resistance to the motion of an automobile consists...Ch. 8 - SSM A 50 g ball is thrown from a window with an...Ch. 8 - A spring with a spring constant of 3200 N/m is...Ch. 8 - A locomotive with a power capability of 1.5 MW can...Ch. 8 - SSM A 0.42 kg shuffleboard disk is initially at...Ch. 8 - A river descends 15 m through rapids. The speed of...Ch. 8 - The magnitude of the gravitational force between a...Ch. 8 - Approximately 5.5 106 kg of water falls 50 m over...Ch. 8 - To make a pendulum, a 300 g ball is attached to...Ch. 8 - In a circus act, a 60 kg clown is shot from a...Ch. 8 - A 70 kg firefighter slides, from rest, 4.3 m down...Ch. 8 - The surface of the continental United States has...Ch. 8 - A spring with spring constant k = 200 N/m is...Ch. 8 - Fasten one end of a vertical spring to a ceiling,...Ch. 8 - The maximum force you can exert on an object with...Ch. 8 - Conservative force Fx acts on a particle that...Ch. 8 - Figure 8-73a shows a molecule consisting of two...Ch. 8 - Repeat Problem 83, but now with the block...Ch. 8 - A spring with spring constant k = 620 N/m is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
24. What bones form the skeleton of the thorax?
Principles of Anatomy and Physiology
The air conditioner in a house or a car has a cooler that brings atmospheric air from 30Cto10C , both states at...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass 0.500 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x (Fig. P7.79). The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point , the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The blocks speed at the bottom of the track is = 12.0 m/s, and the block experiences an average friction force of 7.00 N while sliding up the track. (a) What is x? (b) If the block were to reach the top of the track, what would be its speed at that point? (c) Does the block actually reach the top of the track, or does it fall off before reaching the top?arrow_forwardA block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardConsider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).arrow_forward
- At 220 m, the bungee jump at the Verzasca Dam in Locarno, Switzerland, is one of the highest jumps on record. The length of the elastic cord, which can be modeled as having negligible mass and obeying Hookes law, has to be precisely tailored to each jumper because the margin of error at the bottom of the dam is less than 10.0 m. Kristin prepares for her jump by first hanging at rest from a 10.0-m length of the cord and is observed to stretch the rope to a total length of 12.5 m. a. What length of cord should Kristin use for her jump to be exactly 220 m? b. What is the maximum acceleration she will experience during her jump?arrow_forwardJane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with person-eating crocodiles to save Tarzan from danger. She must swing into a wind exerting constant horizontal force F, on a vine having length L and initially making an angle with the vertical (Fig. P7.81). Take D = 50.0 m, F = 110 N, L = 40.0 m, and = 50.0. (a) With what minimum speed must Jane begin her swing to just make it to the other side? (b) Once the rescue is complete, Tarzan and Jane must swing back across the river. With what minimum speed must they begin their swing? Assume Tarzan has a mass of 80.0 kg.arrow_forwardAssume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 50 cm and holds it in position with a force of 150 N. If the mass of the arrow is 50 g and the “spring” is massless, what is the speed of the arrow immediately after it leaves the bow?arrow_forward
- A 6 000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in Figure P6.27 (page 188). Both springs are described by Hookes law and have spring constants k1 = 1 600 N/m and k2, = 3 400 N/m. After the first spring compresses a distance of 30.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in the graph. The car comes to rest 50.0 cm after first contacting the two-spring system. Find the cars initial speed.arrow_forwardAn inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardConsider a particle on which a force acts that depends on the position of the particle. This force is given by . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-axis.arrow_forward
- Repeat the preceding problem, but this time, suppose that the work done by air resistance cannot be ignored. Let the work done by the air resistance when the skier goes from A to B along the given hilly path be —2000 J. The work done by air resistance is negative since the air resistance acts in the opposite direction to the displacement. Supposing the mass of the skier is 50 kg, what is the speed of the skier at point B ?arrow_forwardAt the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.25 m above where it started. Using conservation of energy, find a. the balls initial speed and b. the height of the ball when it has a speed of 2.5 m/s.arrow_forwardCheck Your Understanding There is a second solution to the system of equations solved in this example (because the energy equation is quadratic): v1.f=-2.5m/s , v2.f=0 . This solution is unacceptable on physical grounds; what’s with it?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY