
Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 11Q
When a particle moves from f to i and from j to i along the paths shown in Fig. 8-28, and in the indicated directions, a conservative force F does the indicated amounts of work on it. How much work is done on the particle by F when the particle moves directly from f to j?
Figure 8-28 Question 11.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please don't use Chatgpt will upvote and give handwritten solution
how would i express force in vector form I keep getting a single number
please help me solve this questions. show all calculations and a good graph too :)
Chapter 8 Solutions
Fundamentals of Physics Extended
Ch. 8 - In Fig. 8-18, a horizontally moving block can take...Ch. 8 - Figure 8-19 gives the potential energy function of...Ch. 8 - Figure 8-20 shows one direct path and four...Ch. 8 - In Fig. 8-21, a small, initially stationary block...Ch. 8 - In Fig. 8-22, a block slides from A to C along a...Ch. 8 - In Fig. 8-23a, you pull upward on a rope that is...Ch. 8 - The arrangement shown in Fig. 8-24 is similar to...Ch. 8 - In Fig. 8-25, a block slides along a track that...Ch. 8 - Figure 8-26 shows three situations involving a...Ch. 8 - Figure 8-27 shows three plums that are launched...
Ch. 8 - When a particle moves from f to i and from j to i...Ch. 8 - SSM What is the spring constant of a spring that...Ch. 8 - In Fig. 8-29, a single frictionless roller-coaster...Ch. 8 - You drop a 2.00 kg book to a friend who stands on...Ch. 8 - Figure 8-31 shows a ball with mass m = 0.341 kg...Ch. 8 - SSM In Fig. 8-32, a 2.00 g ice flake is released...Ch. 8 - In Fig. 8-33, a small block of mass m = 0.032 kg...Ch. 8 - Figure 8-34 shows a thin rod, of length L = 2.00 m...Ch. 8 - A 1.50 kg snowball is fired from a cliff 12.5 m...Ch. 8 - GO In Problem 2, what is the speed of the car at a...Ch. 8 - a In Problem 3, what is the speed of the book when...Ch. 8 - SSM WWW a In Problem 5, what is the speed of the...Ch. 8 - a In Problem 8, using energy techniques rather...Ch. 8 - SSM A 5.0 g marble is fired vertically upward...Ch. 8 - a In Problem 4, what initial speed must be given...Ch. 8 - SSM In Fig. 8-35, a runaway truck with failed...Ch. 8 - A 700 g block is released from rest at height h0...Ch. 8 - In Problem 6, what are the magnitudes of a the...Ch. 8 - a In Problem 7, what is the speed of the ball at...Ch. 8 - GO Figure 8-36 shows an 8.00 kg stone at rest on a...Ch. 8 - GO A pendulum consists of a 2.0 kg stone swinging...Ch. 8 - Figure 8-34 shows a pendulum of length L = 1.25 m....Ch. 8 - A 60 kg skier starts from rest at height H = 20 m...Ch. 8 - ILW The string in Fig. 8-38 is L = 120 cm long,...Ch. 8 - A block of mass m = 2.0 kg is dropped from height...Ch. 8 - At t = 0 a 1.0 kg ball is thrown from a tall tower...Ch. 8 - A conservative force F=(6.0x12)i N, where x is in...Ch. 8 - Tarzan, who weighs 688 N, swings from a cliff at...Ch. 8 - Figure 8-41a applies to the spring in a cork gun...Ch. 8 - SSM WWW In Fig. 8-42, a block of mass m = 12 kg is...Ch. 8 - GO A 2.0 kg breadbox on a frictionless incline of...Ch. 8 - ILW A block with mass m = 2.00 kg is placed...Ch. 8 - In Fig. 8-45, a chain is held on a frictionless...Ch. 8 - GO In Fig. 8-46, a spring with k = 170 N/m is at...Ch. 8 - GO A boy is initially seated on the top of a...Ch. 8 - GO In Fig. 8-42, a block of mass m = 3.20 kg...Ch. 8 - GO Two children are playing a game in which they...Ch. 8 - A uniform cord of length 25 cm and mass 15 g is...Ch. 8 - Figure 8-49 shows a plot of potential energy U...Ch. 8 - GO Figure 8-50 shows a plot of potential energy U...Ch. 8 - The potential energy of a diatomic molecule a...Ch. 8 - A single conservative force Fx acts on a 1.0 kg...Ch. 8 - A worker pushed a 27 kg block 9.2 m along a level...Ch. 8 - A collie drags its bed box across a floor by...Ch. 8 - A horizontal force of magnitude 35.0 N pushes a...Ch. 8 - SSM A rope is used to pull a 3.57 kg block at...Ch. 8 - An outfielder throws a baseball with an initial...Ch. 8 - A 75 g Frisbee is thrown from a point 1.1 m above...Ch. 8 - In Fig. 8-51, a block slides down an incline. As...Ch. 8 - SSM ILW A 25 kg bear slides, from rest, 12 m down...Ch. 8 - A 60 kg skier leaves the end of a ski-jump ramp...Ch. 8 - During a rockslide, a 520 kg rock slides from rest...Ch. 8 - A large fake cookie sliding on a horizontal...Ch. 8 - GO In Fig. 8-52, a 3.5 kg block is accelerated...Ch. 8 - A child whose weight is 267 N slides down a 6.1 m...Ch. 8 - ILW In Fig. 8-53, a block of mass m = 2.5 kg...Ch. 8 - You push a 2.0 kg block against a horizontal...Ch. 8 - GO In Fig. 8-54, a block slides along a track from...Ch. 8 - A cookie jar is moving up a 40 incline. At a point...Ch. 8 - A stone with a weight of 5.29 N is launched...Ch. 8 - Prob. 60PCh. 8 - When a click beetle is upside down on its back, it...Ch. 8 - GO In Fig. 8-55, a block slides along a path that...Ch. 8 - The cable of the 1800 kg elevator cab in Fig. 8-56...Ch. 8 - GO In Fig. 8-57, a block is released from rest at...Ch. 8 - GO A particle can slide along a track with...Ch. 8 - A 3.2 kg sloth hangs 3.0 m above the ground. a...Ch. 8 - SSM A spring k = 200 N/m is fixed at the top of a...Ch. 8 - From the edge of a cliff, a 0.55 kg projectile is...Ch. 8 - SSM In Fig. 8-60, the pulley has negligible mass,...Ch. 8 - GO In Fig. 8-38, the string is L = 120 cm long,...Ch. 8 - SSM In Fig. 8-51, a block is sent sliding down a...Ch. 8 - Two snowy peaks are at heights H = 850 m and h =...Ch. 8 - SSM The temperature of a plastic cube is monitored...Ch. 8 - A skier weighing 600 N goes over a frictionless...Ch. 8 - SSM To form a pendulum, a 0.092 kg ball is...Ch. 8 - We move a particle along an x axis, first outward...Ch. 8 - SSM A conservative force Fx acts on a 2.00 kg...Ch. 8 - At a certain factory, 300 kg crates are dropped...Ch. 8 - SSM A 1500 kg car begins sliding down a 5.0...Ch. 8 - In Fig. 8-65, a 1400 kg block of granite is pulled...Ch. 8 - A particle can move along only an x axis, where...Ch. 8 - For the arrangement of forces in Problem 81, a...Ch. 8 - SSM A 15 kg block is accelerated at 2.0 m/s2 along...Ch. 8 - A certain spring is found not to conform to Hookes...Ch. 8 - SSM Each second, 1200 m3 of water passes over a...Ch. 8 - GO In Fig. 8-67, a small block is sent through...Ch. 8 - SSM A massless rigid rod of length L has a ball of...Ch. 8 - A 1.50 kg water balloon is shot straight up with...Ch. 8 - A 2.50 kg beverage can is thrown directly downward...Ch. 8 - A constant horizontal force moves a 50 kg trunk...Ch. 8 - GO Two blocks, of masses M = 2.0 kg and 2M, are...Ch. 8 - A volcanic ash flow is moving across horizontal...Ch. 8 - A playground slide is in the form of an arc of a...Ch. 8 - The luxury liner Queen Elizabeth 2 has a...Ch. 8 - A factory worker accidentally releases a 180 kg...Ch. 8 - If a 70 kg baseball player steals home by sliding...Ch. 8 - A 0.50 kg banana is thrown directly upward with an...Ch. 8 - A metal tool is sharpened by being held against...Ch. 8 - A swimmer moves through the water at an average...Ch. 8 - An automobile with passengers has weight 16 400 N...Ch. 8 - A 0.63 kg ball thrown directly upward with an...Ch. 8 - The summit of Mount Everest is 8850 m above sea...Ch. 8 - A sprinter who weighs 670 N runs the first 7.0 m...Ch. 8 - A 20 kg object is acted on by a conservative force...Ch. 8 - A machine pulls a 40 kg trunk 2.0 m up a 40 ramp...Ch. 8 - Prob. 106PCh. 8 - The only force acting on a particle is...Ch. 8 - In 1981, Daniel Goodwin climbed 443 m up the...Ch. 8 - A 60.0 kg circus performer slides 4.00 m down a...Ch. 8 - A 5.0 kg block is projected at 5.0 m/s up a plane...Ch. 8 - A 9.40 kg projectile is fired vertically upward....Ch. 8 - A 70.0 kg man jumping from a window lands in an...Ch. 8 - A 30 g bullet moving a horizontal velocity of 500...Ch. 8 - A 1500 kg car starts from rest on a horizontal...Ch. 8 - A 1.50 kg snowball is shot upward at an angle of...Ch. 8 - A 68 kg sky diver falls at a constant terminal...Ch. 8 - A 20 kg block on a horizontal surface is attached...Ch. 8 - Resistance to the motion of an automobile consists...Ch. 8 - SSM A 50 g ball is thrown from a window with an...Ch. 8 - A spring with a spring constant of 3200 N/m is...Ch. 8 - A locomotive with a power capability of 1.5 MW can...Ch. 8 - SSM A 0.42 kg shuffleboard disk is initially at...Ch. 8 - A river descends 15 m through rapids. The speed of...Ch. 8 - The magnitude of the gravitational force between a...Ch. 8 - Approximately 5.5 106 kg of water falls 50 m over...Ch. 8 - To make a pendulum, a 300 g ball is attached to...Ch. 8 - In a circus act, a 60 kg clown is shot from a...Ch. 8 - A 70 kg firefighter slides, from rest, 4.3 m down...Ch. 8 - The surface of the continental United States has...Ch. 8 - A spring with spring constant k = 200 N/m is...Ch. 8 - Fasten one end of a vertical spring to a ceiling,...Ch. 8 - The maximum force you can exert on an object with...Ch. 8 - Conservative force Fx acts on a particle that...Ch. 8 - Figure 8-73a shows a molecule consisting of two...Ch. 8 - Repeat Problem 83, but now with the block...Ch. 8 - A spring with spring constant k = 620 N/m is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
l. Define a tissue.
Principles of Anatomy and Physiology
5.4 Genes E and H are syntenic in an experimental organism with the genotype . Assume
that during each meiosis,...
Genetic Analysis: An Integrated Approach (3rd Edition)
The reason for change in the mass of an atom when an alpha particle is emittedis to be explained. Concept intro...
Living By Chemistry: First Edition Textbook
How is migration based on circannual rhythms poorly suited for adaptation to global climate change?
Campbell Biology (11th Edition)
An underwater buoy is anchored at the seabed with a cable, and it contain a total mass of 250kg . What should t...
Fundamentals Of Thermodynamics
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- The outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forwardThe heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forward
- L₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forwardA cheetah spots a gazelle in the distance and begins to sprint from rest, accelerating uniformly at a rate of 8.00 m/s^2 for 5 seconds. After 5 seconds, the cheetah sees that the gazelle has escaped to safety, so it begins to decelerate uniformly at 6.00 m/s^2 until it comes to a stop.arrow_forward
- A projectile is fired with an initial speed of 40.2 m/s at an angle of 35.0 degree above the horizontal on a long flat firing range. Determine. please help and show work for them so i can understand.arrow_forwardpls helparrow_forwardJ K L The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown (H, I, etc.) is the speed of the object the greatest? + Position H I K Timearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY