PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 2CQ
A car runs out of gas while driving down a hill. It rolls through the valley and starts up the other side. At the very bottom of the valley, which of the free-body diagrams in FIGURE Q8.2 is correct? The car is moving to the right, and drag and rolling friction are negligible.
FIGURE Q8.2
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A67
In short-track speed skating, the track has straight sections and semicircles 16 m in diameter. Assume that a 65 kg skater goes around the turn at a constant 12 m/s.a. What is the horizontal force on the skater?b. What is the ratio of this force to the skater’s weight?
2. A 175-kg roller coaster car is supposed to make a vertical loop with a diameter of 13.5 m, with the
car on the inside of the loop.
a.
What is the minimum speed of the car at the top of the loop so that it doesn't come off of
the tracks and fall to the ground?
b. If the car is traveling at twice that speed, what is the magnitude of the normal force exerted
on the car by the tracks?
Chapter 8 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Q5arrow_forwardYou are riding a dirt bike around a vertical loop that is in a spherical cage. In order for the dirt bike to maintain good traction, you want the normal force of the loop on the dirt bike to be at least twice the weight of the dirt bike when you are at the bottom of the cage. If the sphyrical cage has a radius of 7m, what is your speed at the bottom of the sphyrical cage? Construct the free body diagram of the dirt bike when it is at the top of the loop.arrow_forwardIn an amusement park ride called The Roundup, passengers stand inside a 18 m diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane. Consider that a rider has a mass of 61 kg. a. Suppose the ring rotates once every 6 s. How much force does the ring push on her at the top of the ride? Ftop = N b. Suppose the ring rotates once every 4.5 s. How much force does the ring push on her at the bottom of the ride? Fbot = N c. What is the longest rotation period of the wheel that will prevent the riders from falling off at the top? T = sarrow_forward
- Q5. A 50.4 N force is applied to keep a blok of 24.2 N on the side wall. The static and the kinetic friction coefficients are given as 0.60 and 0.40. Assume the blok is relased from stationary state, a. Does the block start to move? b. What force the wall apply to the block?arrow_forwardA. A 1800 kg car's tires have a coefficient of friction equal to 0.25 on wet asphalt. What is the fastest that this car can drive along a flat turn with a radius of 200 m without slipping? B. How would this speed change if the car had a mass of 3600 kg instead? C. How would this speed change if the road were slanted? Would the possible speed be higher or lower?arrow_forwardMichael Jordan has a portable basketball hoop in his driveway. He has set the basket at 8 ft (2.4 m) high so he can practice dunking the ball (he’s a bit older now, so he can’t quite jump “Air” Jordan style). He slams the ball through the hoop and then hangs on to the rim. This exerts a downward force of 600 N on the front of the rim. The front of the rim is 1.1 m in front of the front edge of the portable hoop’s base. The mass of the whole portable basketball hoop is 70 kg. The center of gravity of the portable hoop is 1.0 m behind the front edge of the base. How much torque is produced around the front of the hoop base by the 600 N force Air Jordan exerts on the front of the rim? How much torque is needed to tip the hoop? What is the largest vertical force that can be exerted on the front edge of the rim before the portable hoop begins to tip?arrow_forward
- A ball of mass m = 0.275 kg swings in a vertical circular path on a string L = 0.850 in long as in Figure P6.31. (a) What are the forces acting on the ball at any point on the path? (b) Draw force diagrams for the ball when it is at the bottom of the circle and when it is at the top. (c) If its speed is 5.20 m/s at the top of the circle, what is the tension in the string there? (d) If the string breaks when its tension exceeds 22.5 N, what is the maximum speed the ball can have at the bottom before that happens? Figure P6.31arrow_forwardThe shower curtain rod in Figure P6.7 is called a tension rod. The rod is not attached to the wall with screws, nails, or glue, but is pressed into the wall instead. Explain why the rod remains at rest, supporting the curtain. Explain why the name is misleading and come up with a better name. FIGURE P6.7arrow_forwardA flat (unbanked) curve on a highway has a radius of 182.5 m. A car rounds the curve at a speed of 35.0 m/s. a. What is the minimum coefficient of static friction that will prevent sliding? b. Suppose that the highway is icy and the coefficient of static friction between the tires and pavement is only one-third of what you found in part (a). What should be the maximum speed of the car so that it can round the curve safely?arrow_forward
- Please answer this questionarrow_forwardA 200 g ball moves in a vertical circle on a 1.08 mm -long string. If the speed at the top is 4.30 m/s , then the speed at the bottom will be 7.80 m/s. What is the ball's weight? What is the tension in the string when the ball is at the top What is the tension in the string when the ball is at the bottom?arrow_forward2. A 45.0 kg boy is initially seated on the top of a hemispherical ice mound of radius 20.0 m. He begins to slide down the ice, with a negligible initial speed. Assume the ice is frictionless. a. At what height does the boy lose contact with the ice. b. What is acting as a radial force?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY