Physics
7th Edition
ISBN: 9780321625915
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 1MCQ
Bonnie sits on the outer rim of a merry-go-round, and Jill sits midway between the center and the rim. The merry-go-round makes one complete revolution every 2 seconds. Jill's linear velocity is:
- the same as Bonnie's.
- twice Bonnie’s.
- half of Bonnie's.
- one-quarter of Bonnie's.
- four times Bonnie's.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A car that travels the envelope of a circle as a trajectory, calculate its speed, speed, components of the normal and tangential acceleration and the total acceleration when the angular displacement is between 0 rad and (π/2) rad. Also calculate the length it traveled in that interval.
An ultracentrifuge accelerates from rest to 9.97×10^5 rpm in 1.51 min. What is its angular acceleration in radians per second squared?
What is the tangential acceleration of a point 9.10 cm from the axis of rotation?
What is the radial acceleration in meters per second squared and in multiples of ? of this point at full revolutions per minute?
Bonnie sits on the outer rim of a merry-go-round, and Jillsits midway between the center and the rim. The merrygo-round makes one complete revolution every 2 seconds.Jill’s linear velocity is:(a) the same as Bonnie’s.(b) twice Bonnie’s.(c) half of Bonnie’s.(d) one-quarter of Bonnie’s.(e) four times Bonnie’s.
Chapter 8 Solutions
Physics
Ch. 8 - A solid ball and a solid cylinder roll down a...Ch. 8 - A bicycle odometer (which counts revolutions and...Ch. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Why is it more difficult to do a sit-up with your...Ch. 8 - If the net force on a system is zero, is the net...Ch. 8 - Mammals that depend on being able to run fast have...Ch. 8 - This book has three symmetry axes through its...Ch. 8 - Can the mass of a rigid object be considered...Ch. 8 - The moment of inertia of a rotating solid disk...
Ch. 8 - Two inclines have the same height but make...Ch. 8 - Two spheres look identical and have the same mass....Ch. 8 - A sphere and a cylinder have the same radius and...Ch. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - 15. Can the diver of Fig. 8-28 do a somersault...Ch. 8 - When a motorcyclist leaves the ground on a jump...Ch. 8 - Prob. 17QCh. 8 - 18. The angular velocity of a wheel rotating on a...Ch. 8 - 19. In what direction is the Earth's angular...Ch. 8 - 20. ‘On the basis of the law of conservation of...Ch. 8 - Bonnie sits on the outer rim of a merry-go-round,...Ch. 8 - Prob. 2MCQCh. 8 - Prob. 3MCQCh. 8 - Prob. 4MCQCh. 8 - Prob. 5MCQCh. 8 - Prob. 6MCQCh. 8 - Prob. 7MCQCh. 8 - Prob. 8MCQCh. 8 - Prob. 9MCQCh. 8 - Prob. 10MCQCh. 8 - Prob. 11MCQCh. 8 - Prob. 12MCQCh. 8 - Suppose you are sitting on a rotating stool...Ch. 8 - Express the following angles in radians: (a)...Ch. 8 - The Sun subtends an angle of about 0.5° to us on...Ch. 8 - A laser beam is directed at the Moon, 380,000 km...Ch. 8 - The blades in a blender rotate at a rate of 6500...Ch. 8 - 5. (II) The platter of the hard drive of a...Ch. 8 - Prob. 6PCh. 8 - (a) A grinding wheel 0.35 m in diameter rotates at...Ch. 8 - Prob. 8PCh. 8 - Calculate the angular velocity (a) of a clock's...Ch. 8 - Prob. 10PCh. 8 - What is the linear speed, due to the Earth's...Ch. 8 - Prob. 12PCh. 8 - How fast (in rpm) must a centrifuge rotate ifa...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - An automobile engine slows down from 3500 rpm to...Ch. 8 - 18. (I) A centrifuge accelerates uniformly from...Ch. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - A wheel 31 cm in diameter accelerates uniformly...Ch. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 52-kg person riding a bike puts all her weight...Ch. 8 - Calculate the net torque about the axle of the...Ch. 8 - A person exerts a horizontal force of 42 N on the...Ch. 8 - Prob. 27PCh. 8 - The bolts on the cylinder head of an engine...Ch. 8 - Determine the net torque on the 2.0-m-long uniform...Ch. 8 - Determine the moment of inertia of a 10.8-kg...Ch. 8 - 31. (I) Estimate the moment of inertia of a...Ch. 8 - A merry-go-round accelerates from rest to 0.68...Ch. 8 - Prob. 33PCh. 8 - (II) A grinding wheel is a uniform cylinder with a...Ch. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - A centrifuge rotor rotating at 9200 rpm is shut...Ch. 8 - 45. (II) To get a flat, uniform cylindrical...Ch. 8 - 46. (Ill) Two blocks are connected by a light...Ch. 8 - 47 (III) An Atwood machine consists of two masses,...Ch. 8 - A hammer thrower accelerates the hammer (mass...Ch. 8 - 49. (I) An automobile engine develops a torque of...Ch. 8 - A centrifuge rotor has a moment of inertia of 325...Ch. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - What is the angular momentum of a 0.270-kg ball...Ch. 8 - (a) What is the angular momentum of a 2.8-kg...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - A person of mass 75 kg stands at the center of a...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75GPCh. 8 - Prob. 76GPCh. 8 - Prob. 77GPCh. 8 - Prob. 78GPCh. 8 - Prob. 79GPCh. 8 - Prob. 80GPCh. 8 - Prob. 81GPCh. 8 - Figure 8-59 illustrates an H20 molecule The O — H...Ch. 8 - A hollow cylinder (hoop) is rolling on a...Ch. 8 - Prob. 84GPCh. 8 - Prob. 85GPCh. 8 - Prob. 86GPCh. 8 - Prob. 87GPCh. 8 - Prob. 88GPCh. 8 - Prob. 89GPCh. 8 - Prob. 90GPCh. 8 - A large spool of rope rolls on the ground with the...Ch. 8 - The Moon orbits the Earth such that the same side...Ch. 8 - Prob. 93GPCh. 8 - Most of our Solar System's mass is contained in...Ch. 8 - Prob. 95GPCh. 8 - Prob. 96GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bicycle wheel with radius 0.3 m rotates from rest to 3 rev/s in 5 s. What is the magnitude and direction of the total acceleration vector at the edge of the wheel at 1.0 s?arrow_forwardA point on a rotating turntable 20.0 cm from the center accelerates from rest to a final speed of 0.700 m/s in 1.75 s. At t = 1.25 s, find the magnitude and direction of (a) the radial acceleration, (b) the tangential acceleration, and (c) the total acceleration of the point.arrow_forwardMath Review (a) Convert 47.0 to radians, using the appropriate conversion ratio. (b) Convert 2.35 rad to degrees. (c) If a circle has radius 1.70 m, what is the are length subtended by a 47.0 angle? (See Sections 1.5 and 7.1.)arrow_forward
- It takes 2 radians (rad) to get around a circle, which Is the same as 360 . How many radians are in 1 ?arrow_forwardAn automobile with 0.260 m radius tires travels 80,000 km before wearing them out. How many revolutions do the tires make, neglecting any backing up and any change in radius due to wear?arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forward
- At its peak, a tornado is 60.0 m in diameter and carries 500 km/h winds. What is its angular velocity in revolutions per second?arrow_forwardSuppose a piece of dust has fallen on a CD. If the spin rate of the CD is 500 rpm, and the piece of dust is 4.3 cm from the center, what is the total distance traveled by the dust in 3 minutes? (Ignore accelerations due to getting the CD rotating.)arrow_forwardA digital audio compact disc carries data, each bit of which occupies 0.6 m along a continuous spiral track from the inner circumference of the disc to the outside edge. A CD player turns the disc to carry the track counterclockwise above a lens at a constant speed of 1.30 m/s. Find the required angular speed (a) at the beginning of the recording, where the spiral has a radius of 2.30 cm, and (b) at the end of the recording, where the spiral has a radius of 5.80 cm. (c) A full-length recording lasts for 74 min 33 s. Find the average angular acceleration of the disc. (d) Assuming that the acceleration is constant, find the total angular displacement of the disc as it plays. (e) Find the total length of the track.arrow_forward
- Keratinocytes are the most common cells in the skins outer layer. As these approximately circular cells migrate across a wound during the healing process, they roll in a way that reduces the frictional forces impeding their motion. (a) Given a cell body diameter of 1.00 105 m (10 m), what minimum angular speed would be required to produce the observed linear speed of 1.67 107 m/s (10 m/min)? (b) How many complete revolutions would be required for the cell to roll a distance of 5.00 103 m? (Because of slipping as the cells roll, averages of observed angular speeds and the number of complete revolutions are about three times these minimum values.)arrow_forwardA track star runs a 400-m race on a 400-m circular track in 45 s. What is his angular velocity assuming a constant speed?arrow_forwardA particle travels at a uniform linear speed around a circle of radius r = 0.5 m, completing one revolution in 12 s. a. What is the value of the linear speed v? b. Find the particles angular speed. c. What are the angle and arc length s swept out by the particle in 4 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY