Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 19P
Two blocks are free to slide along the frictionless, wooden track shown in Figure P8.19. The block of mass m1 = 5.00 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 10.0 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1 rises after the elastic collision.
Figure P8.19
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A small ball of mass 740.0 g is placed in a tube that is bent into a circular arc of radius R= 67.5 cm.The friction between the ball and the walls of the tube is negligible. The ball has an iron core. A magnet is used to raise the ball until it makes an angle of 5.00 degrees with the vertical, and then released from rest. Where will the ball be 1.20 seconds after being released? Express your answer in terms of the angle,θ, that the ball makes with the vertical.
Determine effective length factor (K) for the Columns
moment resisting frame (uninhabited).
Section
D
W 360 x 122
Pinned A
L = 4.80 m
W 310 x 74
Section
I L = 7.20 m
H
W 310 x 143
W 360 x 122
G
E
Fixed B
I
W 310 x 60
L = 6.60 m
L = 4.80 m
L = 6.60 m
I
W 310 x 74
I
W 360 x 179
W 360 x 179
CF, FH & AD
H
F
Fixed
A Section
L = 4.20 m
HSection
A Section
L = 4.80 m
CHS
Section
in the following
A 1840 kg car has just passed a diner. The closest the car
came to the diner was R = 32.5 m, but the car has driven
%3D
another x = 34.7 m in the 2.25 s elapsed since then. If the car
travels at constant speed, what is the current magnitude L of
R
the angular momentum of the car about the diner?
L =
4668885
kg-m²/s
Chapter 8 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 8.1 - Two objects have equal kinetic energies. How do...Ch. 8.1 - Your physical education teacher throws a baseball...Ch. 8.3 - Prob. 8.3QQCh. 8.4 - A table-tennis ball is thrown at a stationary...Ch. 8.6 - A baseball bat of uniform denisty is cut at the...Ch. 8.7 - Prob. 8.6QQCh. 8 - Prob. 1OQCh. 8 - A head-on, elastic collision occurs between two...Ch. 8 - Prob. 3OQCh. 8 - A 57.0-g tennis ball is traveling straight at a...
Ch. 8 - A 5-kg cart moving to the right with a speed of 6...Ch. 8 - A 2-kg object moving to the right with a speed of...Ch. 8 - The momentum of an object is increased by a factor...Ch. 8 - The kinetic energy of an object is increased by a...Ch. 8 - Prob. 9OQCh. 8 - Prob. 10OQCh. 8 - Prob. 11OQCh. 8 - Prob. 12OQCh. 8 - Prob. 13OQCh. 8 - A ball is suspended by a string that is tied to a...Ch. 8 - A massive tractor is rolling down a country road....Ch. 8 - Prob. 16OQCh. 8 - Prob. 17OQCh. 8 - Prob. 18OQCh. 8 - Prob. 1CQCh. 8 - Prob. 2CQCh. 8 - A bomb, initially at rest, explodes into several...Ch. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - A juggler juggles three balls in a continuous...Ch. 8 - Prob. 7CQCh. 8 - Prob. 8CQCh. 8 - Prob. 9CQCh. 8 - Prob. 10CQCh. 8 - Prob. 11CQCh. 8 - Prob. 12CQCh. 8 - An open box slides across a frictionless, icy...Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - A girl of mass mg is standing on a plank of mass...Ch. 8 - Two blocks of masses m and 3m are placed on a...Ch. 8 - Prob. 8PCh. 8 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 8 - A tennis player receives a shot with the ball...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - In a slow-pitch softball game, a 0.200-kg softball...Ch. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Two blocks are free to slide along the...Ch. 8 - As shown in Figure P8.20, a bullet of mass m and...Ch. 8 - Prob. 21PCh. 8 - A tennis ball of mass mt is held just above a...Ch. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - An object of mass 3.00 kg, moving with an initial...Ch. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - A billiard ball moving at 5.00 m/s strikes a...Ch. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A water molecule consists of an oxygen atom with...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - A 2.00-kg particle has a velocity (2.00i3.00j)m/s,...Ch. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - A rocket has total mass Mi = 360 kg, including...Ch. 8 - A model rocket engine has an average thrust of...Ch. 8 - Two gliders are set in motion on a horizontal air...Ch. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - A small block of mass m1 = 0.500 kg is released...Ch. 8 - Prob. 56PCh. 8 - A 5.00-g bullet moving with an initial speed of v...Ch. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - A cannon is rigidly attached to a carriage, which...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - George of the Jungle, with mass m, swings on a...Ch. 8 - Sand from a stationary hopper falls onto a moving...Ch. 8 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Case Study For each velocity listed, state the position and acceleration of the rubber disk in Crall and Whipples experiment (Figs. 16.316.5). There may be more than one possible answer for each given velocity. a. vy = 1.3 m/s b. vy = 1.3 m/s c. vy = 0arrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.570 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Incoming Velcro-covered ball Velcro m M l The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.05 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forwardThree objects are connected by light strings. The string connecting the m1 = 5.65−kg object and the m2 = 4.80−kg object passes over a light frictionless pulley. A string passes over a pulley which is suspended from a horizontal surface. An object of mass m1 and an object of m2 are, respectively, attached to the left and right ends of the string as a 3.00-kg object is suspended from object m2, (a) Determine the acceleration of each object. object m1 magnitude m/s2 object m1 direction ---Select--- up down object m2 magnitude m/s2 object m2 direction ---Select--- up down object m3 magnitude m/s2 object m3 direction ---Select--- up down (b) Determine the tension in the two strings. string between m1 and m2 N string between m2 and the 3.00-kg object Narrow_forward
- You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.570 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Incoming Velcro-covered ball Velcro m M e The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.05 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forwardA truck is carrying a steel beam of length 15.0 m on a freeway.An accident causes the beam to be dumped off the truckand slide horizontally along the ground at a speed of 25.0m/s. The velocity of the center of mass of the beam is northwardwhile the length of the beam maintains an east–westorientation. The vertical component of the Earth’s magneticfield at this location has a magnitude of 35.0 µT. What isthe magnitude of the induced emf between the ends of thebeam?arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity v,- vi. As it passes through the region x = 0 to x-d, the electron experiences acceleration a = a,i + aj, where a, and a, are constants. For the case v, = 2.00 x 10 m/s, a,- 7.52 x 1014 m/s, and a,- 1.68 x 10o15 m/s?, determine the following at x = d- 0.0100 m. %3D (a) the position of the electron (b) the velocity of the…arrow_forward
- It is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity v, = vị. As it passes through the region x = 0 to x = d, the electron experiences acceleration a = aî + aj, where a, and a, are constants. For the case v, = 1.78 × 107 m/s, a, = 7.50 x 1014 m/s?, and a, = 1.62 x 1015 m/s?, determine the following at x = d = 0.0100 m. (a) the position of the electron m (b) the velocity of…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity v, = vî. As it passes through the regic x = 0 to x = d, the electron experiences acceleration a = aî + aj, where a, and a are constants. For the case v, = 1.91 x 10 m/s, a = 8.21 x 1014 m/s?, and a, = 1.73 x 1015 m/s?, determine the following at x = d = 0.0100 m. (a) the position of the electron Y = m (b) the velocity of…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam.As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity v1 = viî. As it passes through the region x = 0 to x = d, the electron experiences acceleration a = axî + ayĵ, where ax and ay are constants. For the case vi = 1.69 ✕ 107 m/s, ax = 8.25 ✕ 1014 m/s2, and ay = 1.49 ✕ 1015 m/s2, determine the following at x = d = 0.0100 m. (a) the position of the electronyf =…arrow_forward
- You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.520 kg and length = 2.05 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Incoming Velcro-covered ball Velcro m M The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.15 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forwardA physics lab instructor is working on a new demonstration. She attaches two identical copper globes with mass m = 0.190 g to strings of length L as shown in the figure. There are two strings in the figure. The top of each string is connected to the ceiling, and both strings are connected at the same point. The bottom of each string is connected to a spherical mass labeled m. Both strings have length L and hang at an angle of θ to the vertical, with the two strings on opposite sides of the vertical. Both globes have the same charge of 6.40 nC, and are in static equilibrium when θ = 4.75°. What is L (in m)? Assume the strings are massless. Find mass (b) What If? The charge on both globes is increased until each string makes an angle of θ = 9.50° with the vertical. If both globes have the same electric charge, what is the charge (in nC) on each globe in this case? Find nCarrow_forward1. For this series of 4 questions, a rider rides in a car that is connected to a 4-m rod, and rotates about the z axis. The rod of negligible mass is subjected to a constant couple moment of M, and the engine of the car supplies a traction force of F. Neglect the size of the car. You will be asked to solve for different things. Please pay attention: the numbers may change from problem to problem since they are randomized. 1) If the total mass of the car and the rider is 145 kg, and the car moves at a velocity of 6.1 m/s, what is the magnitude of the linear momentum of the car-rider system in kg•m/s? Your answer must include 1 place after the decimal point. Your Answer: Answer Z M 4 m Farrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY