(a)
The final velocity of the object.
(a)
Answer to Problem 58P
The final velocity of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression of impulse momentum equation.
Here,
Substitute
Thus, the final velocity of the object is
Conclusion:
Therefore, the final velocity of the object is
(b)
The acceleration of the object.
(b)
Answer to Problem 58P
The acceleration of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Here,
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(c)
The acceleration of the object.
(c)
Answer to Problem 58P
The acceleration of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(d)
The vector displacement of the object.
(d)
Answer to Problem 58P
The vector displacement of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the vector displacement of the object.
Here,
Substitute
Thus, the vector displacement of the object is
Conclusion:
Therefore, the vector displacement of the object is
(e)
The work done on the object.
(e)
Answer to Problem 58P
The work done on the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the work done on the object.
Here,
Substitute
Thus, the work done on the object is
Conclusion:
Therefore, the work done on the object is
(f)
The final kinetic energy of the object.
(f)
Answer to Problem 58P
The final kinetic energy of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(g)
The final kinetic energy of the object.
(g)
Answer to Problem 58P
The final kinetic energy of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(h)
The result of comparison of the answers in part (b), (c) and (f), (g).
(h)
Answer to Problem 58P
The value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Write the expression to calculate the acceleration of the object.
According to the second law of motion,
Substitute
The equation (2) and (8) are same therefore, the value of acceleration in part (b) and (c) are same.
Write the expression to calculate the work done on the object,
Substitute
The equation (10) and (6) are same.
Thus, the value of kinetic energy in part (f) and (g) are same.
Conclusion:
Therefore, the value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- A car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forwardA tennis player receives a shot with the ball (0.060 0 kg) traveling horizontally at 50.0 m/s and returns the shot with the ball traveling horizontally at 40.0 m/s in the opposite direction. (a) What is the impulse delivered to the ball by the tennis racquet? (b) What work does the racquet do on the ball?arrow_forwardThe momentum of an object is increased by a factor of 4 in magnitude. By what factor is its kinetic energy changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1arrow_forward
- A ball of mass 250 g is thrown with an initial velocity of 25 m/s at an angle of 30 with the horizontal direction. Ignore air resistance. What is the momentum of the ball after 0.2 s? (Do this problem by finding the components of the momentum first, and then constructing the magnitude and direction of the momentum vector from the components.)arrow_forwardIn a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forwardA particle has a momentum of magnitude 40.0 kg m/s and a kinetic energy of 3.40 102 J. a. What is the mass of the particle? b. What is the speed of the particle?arrow_forward
- Sandy and Chris stand on the edge of a cliff and throw identical mass rocks at the same speed. Sandy throws her rock horizontally while Chris throws his upward at an angle of 45° to the horizontal. Are the rocks moving at the same speed when they hit the ground, or is one moving faster than the other? If one is moving faster, which one? Explain.arrow_forwardWhen some cars are advertised, they quote a "stopping distance" from some speed to zero. The mass of the car and this value of "some speed" give a measure of initial motion, but we aren't necessarily told the mass. Using the stopping distance, one can directly calculate what physical quantity provided by the brakes? A impulse B chemical potential energy C power D kinetic energy E force F velocity G work H acceleration I massarrow_forwardA body weighing 1 kg is lowered to the ground from a height of 1 m. Is the momentum in this case maintained? Explain. What is the ratio of the kinetic energy of the earth and the body in this case? By how much did the Earth move?arrow_forward
- is the following statement true? If not, why? Within the system, both the momentum and kinetic energy are conserved during each of the collisions ( spring-loaded elastic, hoop spring, and putty collisions).arrow_forwardJust a little something on momentum and kinetic energy. As a reminder, momentum is a vector and: p = mv K = 1/2 mv2 = 1/2 pv = p2/2m In terms of the dot product: v2 = v⋅v, p2 = p⋅p, and pv = p⋅v. Unlike speed vs. velocity, but like all other vectors, momentum may refer to the magnitude of the momentum vector. Now, answers the following questions: 1) A 7-kg particle goes 96 m/s. Calculate its momentum in kg*m/s. (This requires an exact answer.) 2) A 7-kg particle's momentum is (392, 61) kg*m/s. Calculate its kinetic energy. 3) A pebble and a grapefruit have the same momentum. Which has the greater kinetic energy?arrow_forwardA teacher attending a meeting decided to check what would happen with kinetic mercy if she changed the momentum. She decided to conduct an experiment using a dynamics cart. The student measured the speed of the cart as she released it from inclined surfaces with different slopes. She was able to increase the momentum by a factor of 17. By what factor did the kinetic energy change.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill