
(a)
The final velocity of the person and the cart.
(a)

Answer to Problem 49P
The final velocity of the person and the cart is
Explanation of Solution
Write the expression for conservation of momentum for inelastic collision.
Here,
Conclusion:
Substitute
In vector notation the velocity of the cart and person is,
Therefore, the final velocity of the person and the cart is
(b)
The friction force acting on the person.
(b)

Answer to Problem 49P
The friction force acting on the person is
Explanation of Solution
Write the expression for normal force by using Newton’s second law in y direction
Here,
Write the expression for frictional force exerted on the person.
Here,
Conclusion:
Substitute
Substitute
In vector notation the frictional force is,
Therefore, the friction force acting on the person is
(c)
The time taken for the frictional force acting on the person.
(c)

Answer to Problem 49P
The time taken for the frictional force acting on the person is
Explanation of Solution
Write the expression for person’s momentum equal to the impulse.
Here,
Write the expression for initial momentum.
Here,
Write the expression for final momentum.
Here,
Write the expression for impulse.
Here,
Conclusion:
Substitute the equations (V), (VI) and (VII) in equation (IV).
Substitute
Therefore, the time taken for the frictional force acting on the person is
(d)
The change in momentum of the person and the cart.
(d)

Answer to Problem 49P
The change in momentum of the person is
Explanation of Solution
Write the expression for change in momentum of the person.
Write the expression for change in momentum of the cart.
Conclusion:
Substitute
Substitute
Therefore, the change in momentum of the person is
(e)
The displacement of the person relative to the ground.
(e)

Answer to Problem 49P
The displacement of the person relative to the ground is
Explanation of Solution
Write the expression for displacement of the person relative to the ground.
Here,
Conclusion:
Substitute
Therefore, the displacement of the person relative to the ground is
(f)
The displacement of the cart relative to the ground.
(f)

Answer to Problem 49P
The displacement of the cart relative to the ground is
Explanation of Solution
Write the expression for displacement of the cart relative to the ground.
Conclusion:
Substitute
Therefore, the displacement of the cart relative to the ground is
(g)
The change in kinetic energy of the person.
(g)

Answer to Problem 49P
The change in kinetic energy of the person is
Explanation of Solution
Write the expression for change in kinetic energy of the person.
Conclusion:
Substitute
Therefore, the change in kinetic energy of the person is
(h)
The change in kinetic energy of the cart.
(h)

Answer to Problem 49P
The change in kinetic energy of the cart is
Explanation of Solution
Write the expression for change in kinetic energy of the cart.
Conclusion:
Substitute
Therefore, the change in kinetic energy of the cart is
(i)
Why the answers part (g) and (h) are differ.
(i)

Answer to Problem 49P
Because. the distance moved by the cart is different from the distance moved by the point of application of friction force to the cart.
Explanation of Solution
The force exerted by the person on the cart must be equal in magnitude and opposite in direction to the force exerted by the cart on the person. The changes in momentum of the two objects must be equal in magnitude and must be added to zero.
The change in kinetic energy is different in magnitude and does not add to zero.
Conclusion:
The following situation is represents in two ways,
The distance moved by the cart is different from the distance moved by the point of application of friction force to the cart.
The total change in mechanical energy for both objects add together becomes zero, it is perfectly in elastic collision.
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- No chatgpt pls will upvotearrow_forward2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forward
- No chatgpt pls will upvotearrow_forwardSARET CRKS AUTOWAY 12. A stone is dropped from the top of a cliff. It is seen to hit the ground below after 3.55 s. How high is the cliff? 13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming no air resistance, what is the speed of the ball just before it strikes the ground? 14. Estimate (a) how long it took King Kong to fall straight down from the top of the Empire State Building (280m high), and (b) his velocity just before "landing". Useful equations For Constant Velocity: V => D X = V₁t + Xo For Constant Acceleration: Vr = V + at X = Xo+Vot + v=V+2a(X-Xo) \prom = V +V V velocity t = time D Distance X = Final Position Xo Initial Position V = Final Velocity Vo Initial Velocity a = acceleration For free fall Yf = Final Position Yo Initial Position g = 9.80 m $2 For free fall: V = V + gt Y=Yo+Vo t + +gt V,² = V₁²+2g (Y-Yo) V+Vo Vprom= 2 6arrow_forwardSolve the problemsarrow_forward
- A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an upward velocity of 5 m/s. Find its displacement for t> 0. y(t) וןarrow_forward7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardProblem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





