
(a)
The final velocity of the person and the cart.
(a)

Answer to Problem 49P
The final velocity of the person and the cart is
Explanation of Solution
Write the expression for conservation of momentum for inelastic collision.
Here,
Conclusion:
Substitute
In vector notation the velocity of the cart and person is,
Therefore, the final velocity of the person and the cart is
(b)
The friction force acting on the person.
(b)

Answer to Problem 49P
The friction force acting on the person is
Explanation of Solution
Write the expression for normal force by using Newton’s second law in y direction
Here,
Write the expression for frictional force exerted on the person.
Here,
Conclusion:
Substitute
Substitute
In vector notation the frictional force is,
Therefore, the friction force acting on the person is
(c)
The time taken for the frictional force acting on the person.
(c)

Answer to Problem 49P
The time taken for the frictional force acting on the person is
Explanation of Solution
Write the expression for person’s momentum equal to the impulse.
Here,
Write the expression for initial momentum.
Here,
Write the expression for final momentum.
Here,
Write the expression for impulse.
Here,
Conclusion:
Substitute the equations (V), (VI) and (VII) in equation (IV).
Substitute
Therefore, the time taken for the frictional force acting on the person is
(d)
The change in momentum of the person and the cart.
(d)

Answer to Problem 49P
The change in momentum of the person is
Explanation of Solution
Write the expression for change in momentum of the person.
Write the expression for change in momentum of the cart.
Conclusion:
Substitute
Substitute
Therefore, the change in momentum of the person is
(e)
The displacement of the person relative to the ground.
(e)

Answer to Problem 49P
The displacement of the person relative to the ground is
Explanation of Solution
Write the expression for displacement of the person relative to the ground.
Here,
Conclusion:
Substitute
Therefore, the displacement of the person relative to the ground is
(f)
The displacement of the cart relative to the ground.
(f)

Answer to Problem 49P
The displacement of the cart relative to the ground is
Explanation of Solution
Write the expression for displacement of the cart relative to the ground.
Conclusion:
Substitute
Therefore, the displacement of the cart relative to the ground is
(g)
The change in kinetic energy of the person.
(g)

Answer to Problem 49P
The change in kinetic energy of the person is
Explanation of Solution
Write the expression for change in kinetic energy of the person.
Conclusion:
Substitute
Therefore, the change in kinetic energy of the person is
(h)
The change in kinetic energy of the cart.
(h)

Answer to Problem 49P
The change in kinetic energy of the cart is
Explanation of Solution
Write the expression for change in kinetic energy of the cart.
Conclusion:
Substitute
Therefore, the change in kinetic energy of the cart is
(i)
Why the answers part (g) and (h) are differ.
(i)

Answer to Problem 49P
Because. the distance moved by the cart is different from the distance moved by the point of application of friction force to the cart.
Explanation of Solution
The force exerted by the person on the cart must be equal in magnitude and opposite in direction to the force exerted by the cart on the person. The changes in momentum of the two objects must be equal in magnitude and must be added to zero.
The change in kinetic energy is different in magnitude and does not add to zero.
Conclusion:
The following situation is represents in two ways,
The distance moved by the cart is different from the distance moved by the point of application of friction force to the cart.
The total change in mechanical energy for both objects add together becomes zero, it is perfectly in elastic collision.
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- What is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





