
(a)
The reason that why the successful tackle constitutes a perfectly inelastic collision.
(a)

Answer to Problem 30P
The successful tackle constitutes a perfectly inelastic collision because they are stuck together and the momentum is conserved.
Explanation of Solution
Given info: The mass of the fullback is
Momentum is a vector quantity which is always conserved in a closed system while kinetic energy is not a vector quantity. So, it is use the direction and magnitude of the player’s original momenta to figure out how they will be moving post collision. Thus, the successful tackle constitutes a perfectly inelastic collision because they are stuck together and the momentum is conserved.
Conclusion:
Therefore, the successful tackle constitutes a perfectly inelastic collision because they are stuck together and the momentum is conserved.
(b)
The velocity of the players immediately after the tackle.
(b)

Answer to Problem 30P
The velocity of the players immediately after the tackle is
Explanation of Solution
Given info: The mass of the fullback is
Formula to calculate the momentum of the fullback is,
Here,
Substitute
Thus, the momentum of the fullback is
Formula to calculate the momentum of the opponent is,
Here,
Substitute
Thus, the momentum of the opponent is
After the collision, the momentum of the players will be neither be in north nor in east.
It should be in between north and east. So, the addition of vectors is used to calculate the momentum of the players immediately after the tackle.
Formula to calculate the hypotenuse of right triangle formed by placing the vectors is,
Here,
Substitute
Thus, the momentum of the players immediately after the tackle is
Formula to calculate the combined mass of the players is,
Here,
Substitute
Thus, the combined mass of the players is
Formula to calculate the velocity of the players immediately after the tackle is,
Here,
Substitute
Conclusion:
Therefore, the velocity of the players immediately after the tackle is
(c)
The decrease in the mechanical energy as a result of the collision.
(c)

Answer to Problem 30P
The decrease in the mechanical energy as a result of the collision is
Explanation of Solution
Given info: The mass of the fullback is
Formula to calculate the kinetic energy of the fullback is,
Here,
Substitute
Thus, the kinetic energy of the fullback is
Formula to calculate the kinetic energy of the opponent is,
Here,
Substitute
Thus, the kinetic energy of the opponent is
Formula to calculate the total kinetic energy of the player prior to the collsion is,
Here,
Substitute
Thus, the total kinetic energy of the player prior to the collsion is
Formula to calculate the total kinetic energy followed by the collision is,
Here,
Substitute
Thus, the total kinetic energy followed by the collision is
Formula to calculate the decrease in the mechanical energy as a result of the collision is,
Here,
Substitute
This decrease in the mechanical energy as a result of the collision is converted into heat energy to tackle.
Conclusion:
Therefore, the decrease in the mechanical energy as a result of the collision is
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





