EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 187P
Design an experiment to measure the viscosity of liquids using a vertical funnel with a cylindrical reservoir of height h and a narrow flow section of diameter D and length L. Making appropriate assumptions, obtain a relation for viscosity in terms of easily measurable quantities such as density and volume flow rate. Is there a need for the use of a correction factor?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
It is desired to determine the surface tension of a particular fluid using a capillary-riseexperiment. Kienth used a 0.5 mm glass tube and found that the height of the liquidmeasured 30 mm with a contact angle of 30°. Kienth then performed viscosity measurements using an Ostwald viscometer. He found that the fluid takes 1.5 times slowerto flow through the viscometer relative to water with a density of 1000 kg/m? and aviscosity of 1.0 cP. It is previously known that the viscosity of the fluid is 1.35 cP. Whatis the surface tension of the liquid?
A Pipe used to transport an oil of specific gravity of 0.90 & 0.03poise at a Velocity of 1.6977m/s with a flow rate of 3cubic meter per second. A Pipe was used to conduct a test using water at 20 degree celsius with a velocity of 5.0931m/s. Find the diameter of the prototype. Viscosity of water at 20 degree celsius is 0.01poise
the sutherland constant is 120, please use
p, and k to solve this problem.
The standard density of air is p= 1.29x10%gr/cm³,
(v) = 4.6x10*cm/s, and that the thermal conductivity
K= 0.0548x10-3cal/cm s K. Estimate the viscosity of the
air and compare your result with the value measured
n=18.19x10-5 gr/cm s, at P = 1 atm and T = 298 K.
Chapter 8 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - How does surface roughness affect the pressure...
Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Water at 70F passes through...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 10C (p = 999.7 kg/m3 and = 1.307 ×...Ch. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Air enters a 10-m-long section of a rectangular...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - Consider the fully developed flow of glycerin at...Ch. 8 - The velocity profile for a steady laminar flow in...Ch. 8 - The generalized Bernoulli equation for unsteady...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - Prob. 68CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - Prob. 74PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 76EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Gasoline (p = 680 kg/m3 and v = 4.29 × 10-7 m2/s)...Ch. 8 - Prob. 81EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 83PCh. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 89PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 93PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - In large buildings, hot water in a water tank is...Ch. 8 - Prob. 99PCh. 8 - Two pipes of identical length and material are...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - What is the difference between laser Doppler...Ch. 8 - Prob. 103CPCh. 8 - Prob. 104CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 106CPCh. 8 - Prob. 107CPCh. 8 - Prob. 108CPCh. 8 - A 15-L kerosene tank (p = 820 kg/m3) is filled...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114EPCh. 8 - Prob. 115EPCh. 8 - Prob. 116PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Prob. 121PCh. 8 - Prob. 122EPCh. 8 - Prob. 123PCh. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 125PCh. 8 - Prob. 126PCh. 8 - Prob. 127PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Prob. 129PCh. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 133PCh. 8 - Two pipes of identical diameter and material are...Ch. 8 - Prob. 135PCh. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Consider flow front a reservoir through a...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 142PCh. 8 - Prob. 145EPCh. 8 - Prob. 146EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 148PCh. 8 - Prob. 152PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 155PCh. 8 - Find the total volume flow rate leaving a tank...Ch. 8 - Prob. 158PCh. 8 - Water is siphoned from a reservoir open to the...Ch. 8 - It is a well-known fact that Roman aqueduct...Ch. 8 - In a piping system, what is used to control the...Ch. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Consider laminar flow of water in a...Ch. 8 - Water at 10 C flows in a 1.2-cm-diameter pipe at a...Ch. 8 - Engine oil at 20 C flows in a 15-cm-diamcter pipe...Ch. 8 - Prob. 169PCh. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Prob. 172PCh. 8 - Air at 1 atm and 25 C flows in a 4-cm-diameter...Ch. 8 - Hot combustion 8ases approximated as air at I atm...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - The valve in a piping system cause a 3.1 in head...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 182PCh. 8 - Prob. 183PCh. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is the dynamic viscosity of the fluid? must include FBD F ... F = 0.45 Ibf m = 151 g v = 0.006 m/s Thk. = 20 cm THISE AN 8mm 6mm, A Steel Plate is pulled up at a constant QU velocity between two layers of liquid 30 cm Ignore Friction at openings @ 20°C @ 20°C 1940arrow_forwardAn ideal gas at 250 °C and atmospheric pressure flows through a smooth pipe with ID 6-in. The molecular weight of the ideal gas is 35 g/mol, and its viscosity is 0.002 cP. If the average velocity of the gas is 3.5 m/s, determine the pressure drop per unit length (m).arrow_forwardConsider the setup shown below, with a valve to adjust the flow of a fluid to an orifice meter equipped with a differential manometer across it, in series with a rotameter that has been previously calibrated for liquid acetone (density= 0.791 g/cm3), the fluid of interest. The rotameter calibration expression was found to be V=1.56R, where the volumetric flow rate is in mL/s and the rotameter reading is unitless. The manometer fluid has a specific gravity of 1.210. a) For one valve setting resulting in a rotameter reading of 82.0 as liquid acetone flows through the system, the height difference of the manometer fluid is 22.0 mm. The volumetric flow rate for this condition in mL/s with 3 sig. fig's is b) For one valve setting resulting in a rotameter reading of 80.0 as liquid acetone flows through the system, the height difference of the manometer fluid is 22.3 mm. The pressure drop for this condition in Pascals (Pa) with 3 sig. fig's isarrow_forward
- A fluid is being pumped through a pipe. The density of fluid is 872 kg/m³. The viscosity is 2.8x102 Pa.s. The velocity in the pipe is 5.9 m/s. If the Reynolds number is 2100. a- What is the pipe cross-sectional area? b- If the pipe cross-sectional area increased 1.5 fold under same Reynold number, density and viscosity, what is the new velocity?arrow_forwardFigure 1 shows a layer of oil(8.95 kN/m^3), the thickness of 0,3mm, between two parallel plates, the upper plate is pulled across the bottom plate with a cable connected to winch. The upper plate moves with a velocity 0.05m/s. The area contact between the upper plate and the oil is 1.5m^2. Determine the kinematic viscosity of the oil if the torque acting winch drum should not exceed 24.5 ×10^-3 Nm. Take the drum diameter as 50mm.arrow_forward1. A capillary tube is being used to measure the viscosity of a Newtonian liquid. The tube has a 4-cm diameter and a length of 20 cm. Estimate the viscosity coefficient for the liquid if a pressure of 2.5 kPa is required to maintain a flow rate of 1 kg/s. The liquid density is 998 kg/m3 2. Calculate the viscosity of a fluid that would allow a pressure drop of 35 kPa over a 5 – m length of 3.4 in. stainless steel sanitary pipe if the fluid is flowing at 0.12 m3/hr and has a density of 1010 kg/m3. Assume laminar flow. 3. At 2 cm diameter, 5 cm long capillary-tube viscometer is being used to measure viscosity of 10 – Pa.s liquid food. Determine the pressure required for measurement when a flow rate of 1 kg/min is desired and ρ= 1000 kg/m3.arrow_forward
- PROB E. A capillary –tube viscometer is being selected to measure viscosity of a liquid food. The maximum viscosity to be measured will be 230 cP and the maximum mass rate is 900 grams per hour. If the tube length is 10 cm and the maximum sustainable pressure is 25 Pa, determine the nominal diameter size of the tube to be used.arrow_forwardA rotating cup viscometer has an inner cylinder diameter of 50.8mm, and the gap between cups is 5.08mm. The inner cylinder length is 63.5mm. The viscometer is used to obtain viscosity data on a Newtonian liquid. When the inner cylinder rotates at 10 rev/min, the torque on the inner cylinder is measured to be 0.01243mN - m. Calculate the viscosity of the fluid. If the fluid density is 850 kg/ m^3, calculate the kinematic viscosity.arrow_forward1.).A cylindrical shaft of radius 5 cm is rotating at a speed of 50 rad/s in a cylindrical bearing . Shaft and bearing are concentric . The lubricant of viscosity 0,6 Pa s and SG= 0,9 completely fills the clearance between shaft and bearing surface. Take clearance as 0,5 cm and length of shaft as 10 cm . The lubricant flow is laminar steady and uniform . Frictional force on shaft surface is ? ANSWER:9,42 Narrow_forward
- What is the behavior of flow if water at 20 deg C is flowing through a pipe with a radius of 2.067 in at 20 gal/min. Viscosity of water at 20 deg C =1.005 cP Density of water at 20 deg C = 998.23 kg/m3arrow_forwardThe glycerin at 40 C flows through a horizontal cylindrical pipe. The length of the pipe is 70 m and the diameter of the pipe is 4 cm. The flow is steady state and fully developed. The velocity of the fluid at the centerline is 6 m/s. PLEASE DRAW THE FIGURE OF THE PIPE and labet the necessary info . The density and the viscosity of the glycerin at 40 0C are 1252 kg/m3 and 0.3073 kg/m.s, respectively. Is this a laminar flow? Write an equation for the variation of the local flow velocity with the radial direction. Determine the shear stress exerted by the glycerin on the wall of the pipe. Calculate the volume flow rate.arrow_forwardA shaft 70.0 mm in diameter is being pushed at speed of 0.4 m/s through a bearing sleeve 70.2 mm in diameter and 250 mm long. The clearance, assumed uniform, is filled with oil at 4degree C with viscosity of 0.005 m^2/s and s.g. =0.9. Find the force exerted on the shaft in N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License