
Concept explainers
(a)
The rate of flow of oil through the funnel when diameter of pipe is doubled.
The funnel effectiveness when the diameter of the pipe is doubled.

Answer to Problem 83P
The rate of flow through the funnel is
The funnel effectiveness is
Explanation of Solution
Given information:
The temperature of oil is
Write the expression for the flow rate in the tunnel.
Here, the pipe length is
The exit point is taken as reference level.
Write the expression for the energy equation.
Here, the inlet pressure is
The exit is taken as the reference level; there is no turbine or pump, the flow is frictionless, the correction factor of kinetic energy is unity and the head loss is zero.
The fluid is open to atmosphere at inlet and outlet.
Write the expression for the maximum flow rate.
Write the expression for the funnel effectiveness.
Here, the given flow rate is
Calculation:
Substitute
Therefore, the rate through the funnel is
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the funnel effectiveness is
Conclusion:
Therefore, the rate of flow through the funnel is
Therefore, the funnel effectiveness is
(b)
The rate of flow of oil via the funnel when the length of pipe is tripled and diameter is maintained the same.
The funnel effectiveness when the length of pipe is tripled and diameter is maintained the same.

Answer to Problem 83P
The rate of flow through the funnel is
The funnel effectiveness is
Explanation of Solution
Given information:
The temperature of oil is
Write the expression for the flow rate in the tunnel.
Here, the pipe length is
The exit point is taken as reference level.
Write the expression for the energy equation.
Here, the inlet pressure is
The exit is taken as the reference level; there is no turbine or pump, the flow is frictionless, the correction factor of kinetic energy is unity and the head loss is zero.
The fluid is open to atmosphere at inlet and outlet.
Write the expression for the maximum flow rate.
Write the expression for the funnel effectiveness.
Here, the given flow rate is
Calculation:
Substitute
Therefore, the flow rate through the funnel is
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The rate of flow through the funnel is
The funnel effectiveness is
Want to see more full solutions like this?
Chapter 8 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
- can you please help me perform Visual Inspection and Fractography of the attatched image: Preliminary examination to identify the fracture origin, suspected fatigue striation, and corrosion evidences.arrow_forwardcan you please help[ me conduct Causal Analysis (FTA) on the scenario attatched: FTA diagram which is a fault tree analysis diagram will be used to gain an overview of the entire path of failure from root cause to the top event (i.e., the swing’s detachment) and to identify interactions between misuse, material decay and inspection errors.arrow_forwardhi can you please help me in finding the stress intensity factor using a k-calcluator for the scenario attathced in the images.arrow_forward
- Hi, can you please help me .Identify and justify suitable analytical techniques of the scenario below, bearing in mind the kinds of information being handled to reach a conclusion (methodology). A child swing set was discovered to have failed at the fixing at the top of the chains connecting the seat to the top of the swing set. A 12 mm threaded steel bolt, connecting the shackle to the top beam, failed at the start of the threaded region on the linkage closest to the outside side of the swing set . The linkage and bolts were made of electro galvanised mild steel . The rigid bar chain alternatives and fixings were of the same material and appeared to be fitted in accordance with guidelines. The yield strength of the steel used is 260 MPa and the UTS is 380 MPa. The bolt that failed was threaded using a standard thread with a pitch (distance between threads) of 1.75 mm and a depth of approximately 1.1 mm. The swing set in question had been assigned to ‘toddlers’ with the application of…arrow_forwardHi, can you please define and calculate the failure mode of the linkage that failed on the swing (images added) : A child swing set was discovered to have failed at the fixing at the top of the chains connecting the seat to the top of the swing set. A 12 mm threaded steel bolt, connecting the shackle to the top beam, failed at the start of the threaded region on the linkage closest to the outside side of the swing set . The linkage and bolts were made of electro galvanised mild steel . The rigid bar chain alternatives and fixings were of the same material and appeared to be fitted in accordance with guidelines. The yield strength of the steel used is 260 MPa and the UTS is 380 MPa. The bolt that failed was threaded using a standard thread with a pitch (distance between threads) of 1.75 mm and a depth of approximately 1.1 mm. The swing set in question had been assigned to ‘toddlers’ with the application of a caged-type seat. However, the location was within the play area not…arrow_forwardPage 11-68. The rectangular plate shown is subjected to a uniaxial stress of 2000 psi. Compute the shear stress and the tensile developed on a plane forming an angle of 30° with the longitud axis of the member. (Hint: Assume a cross-sectional area of unity) 2000 psi 2000 psi hparrow_forward
- 11-70. A shear stress (pure shear) of 5000 psi exists on an element. (a) Determine the maximum tensile and compressive stresses caused in the element due to this shear. (b) Sketch the element showing the planes on which the maximum tensile and compressive stresses act.arrow_forward11-20. An aluminum specimen of circular cross section, 0.50 in. in diameter, ruptured under a tensile load of 12,000 lb. The plane of failure was found to be at 48° with a plane perpendicular to the longitudinal axis of the specimen. (a) Compute the shear stress on the failure plane. (b) Compute the maximum tensile stress. (c) Compute the tensile stress on the failure plane. hparrow_forwardA long flat steel bar 13 mm thick and 120 mm wide has semicircular grooves as shown and carries a tensile load of 50 kN Determine the maximum stress if plate r= 8mm r=21mm r=38mmarrow_forward
- Problem 13: F₁ = A =250 N 30% Determine the moment of each of the three forces about point B. F₂ = 300 N 60° 2 m -3 m B 4 m F3=500 Narrow_forward3 kN 3 kN 1.8 kN/m 80 mm B 300 mm D an 1.5 m-1.5 m--1.5 m- PROBLEM 5.47 Using the method of Sec. 5.2, solve Prob. 5.16 PROBLEM 5.16 For the beam and loading shown, determine the maximum normal stress due to bending on a transverse section at C.arrow_forward300 mm 3 kN 3 kN 450 N-m D E 200 mm 300 mm PROBLEM 5.12 Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value (a) of the shear, (b) of the bending moment.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
