Reconsider Prob. 8-78. In order to drain the tank faster, a pump is installed near the tank exit as in Fig. 8-79. Determine how much pump power input is necessary to establish an average water velocity of 4 m/s when the tank is full at z = 2 In. Also, assuming the discharge velocity to remain constant, estimate the time required to drain the tank. Someone suggests that it makes no difference whether the pump is located at the begining or at the end of the pipe, and that the performance will be the same in either, case, but another person argues that placing the pump near the end of the pipe may cause cavitation. The water temperature is 30CC. so the water vapor pressure is P1. 4.236 kPa 0.43 m H 2 O, and the system is located at sea level. Investigate if there is the possibility of cavitation and if we should be concerned about the location of the plump.
Reconsider Prob. 8-78. In order to drain the tank faster, a pump is installed near the tank exit as in Fig. 8-79. Determine how much pump power input is necessary to establish an average water velocity of 4 m/s when the tank is full at z = 2 In. Also, assuming the discharge velocity to remain constant, estimate the time required to drain the tank. Someone suggests that it makes no difference whether the pump is located at the begining or at the end of the pipe, and that the performance will be the same in either, case, but another person argues that placing the pump near the end of the pipe may cause cavitation. The water temperature is 30CC. so the water vapor pressure is P1. 4.236 kPa 0.43 m H 2 O, and the system is located at sea level. Investigate if there is the possibility of cavitation and if we should be concerned about the location of the plump.
Solution Summary: The author explains the pump power input, the time required for draining the tank, and the energy equation.
Reconsider Prob. 8-78. In order to drain the tank faster, a pump is installed near the tank exit as in Fig. 8-79. Determine how much pump power input is necessary to establish an average water velocity of 4 m/s when the tank is full at z = 2 In. Also, assuming the discharge velocity to remain constant, estimate the time required to drain the tank. Someone suggests that it makes no difference whether the pump is located at the begining or at the end of the pipe, and that the performance will be the same in either, case, but another person argues that placing the pump near the end of the pipe may cause cavitation. The water temperature is 30CC. so the water vapor pressure is P1. 4.236 kPa 0.43 m H2O, and the system is located at sea level. Investigate if there is the possibility of cavitation and if we should be concerned about the location of the plump.
An axial-flow pump is designed to deliver water at a rate of 0.90 m3/s running at 620 rpm. Determine the available head, power, diameter and NPSH required for the pump at the maximum efficiency which is 75% . At maximum efficiency, the discharge coefficient, power coefficient, head coefficient and NPSH coefficient are given to be 0.048, 0.0012, 0.018 and 0.023 respectively. Take density of water to be 1000 kg/m3
Underground water is pumped to a pool at a given elevation. The maximum flow rate and the pressure difference across the pump are to be determined. The pump-motor draws 3-kW of power, and is 70% efficient. Then the useful mechanical power it delivers to the fluid is
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.