EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 127P
To determine
The relation for the variation of water height from the cone base with time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
times
A cenrifugal pump having outer diameter equal two
the inner diameter and running at 1200rpm works
agaist a total head of 32m. The velocity of flow through
the impeller is constant and equal to 3m/s. The vanes are
set back at an anhgle of 30°at the outlet. If the outer
diameter of the impeller is 600mm and width at outlet is
50mm, determine:
a- Vane angle at inlet.
b- Work done per second by impeller.
c- Manometric efficiency.
This is a fluid machine question.
Water reservoir is pumped over a hill through a pipe 450 mm in diameter and a pressure of 98.08 kPa is maintained in the summit water discharge is 30 m above the reservoir. The quantity pumped is 0.50 m3/s. rrictional losses in the discharge and suction pipe of the pump is equivalent to 1.5 m head loss. The speed of the pump is 800 rpm, what amount of energy must be furnished by the pump in kW?
Dear Sir ,
Ca you slove this
Chapter 8 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - How does surface roughness affect the pressure...
Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Water at 70F passes through...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 10C (p = 999.7 kg/m3 and = 1.307 ×...Ch. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Air enters a 10-m-long section of a rectangular...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - Consider the fully developed flow of glycerin at...Ch. 8 - The velocity profile for a steady laminar flow in...Ch. 8 - The generalized Bernoulli equation for unsteady...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - Prob. 68CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - Prob. 74PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 76EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Gasoline (p = 680 kg/m3 and v = 4.29 × 10-7 m2/s)...Ch. 8 - Prob. 81EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 83PCh. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 89PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 93PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - In large buildings, hot water in a water tank is...Ch. 8 - Prob. 99PCh. 8 - Two pipes of identical length and material are...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - What is the difference between laser Doppler...Ch. 8 - Prob. 103CPCh. 8 - Prob. 104CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 106CPCh. 8 - Prob. 107CPCh. 8 - Prob. 108CPCh. 8 - A 15-L kerosene tank (p = 820 kg/m3) is filled...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114EPCh. 8 - Prob. 115EPCh. 8 - Prob. 116PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Prob. 121PCh. 8 - Prob. 122EPCh. 8 - Prob. 123PCh. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 125PCh. 8 - Prob. 126PCh. 8 - Prob. 127PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Prob. 129PCh. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 133PCh. 8 - Two pipes of identical diameter and material are...Ch. 8 - Prob. 135PCh. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Consider flow front a reservoir through a...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 142PCh. 8 - Prob. 145EPCh. 8 - Prob. 146EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 148PCh. 8 - Prob. 152PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 155PCh. 8 - Find the total volume flow rate leaving a tank...Ch. 8 - Prob. 158PCh. 8 - Water is siphoned from a reservoir open to the...Ch. 8 - It is a well-known fact that Roman aqueduct...Ch. 8 - In a piping system, what is used to control the...Ch. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Consider laminar flow of water in a...Ch. 8 - Water at 10 C flows in a 1.2-cm-diameter pipe at a...Ch. 8 - Engine oil at 20 C flows in a 15-cm-diamcter pipe...Ch. 8 - Prob. 169PCh. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Prob. 172PCh. 8 - Air at 1 atm and 25 C flows in a 4-cm-diameter...Ch. 8 - Hot combustion 8ases approximated as air at I atm...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - The valve in a piping system cause a 3.1 in head...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 182PCh. 8 - Prob. 183PCh. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1 Acentrifugal pump running at 500 rpm and at its maximum efficiency is delivering a head of 30 m ata flow rate of 60 litres per minute. If the rpm is changed to 1000, then the head H in metres and flow rate Qin litres per minute at maximum efficiency are estimated to be (a) H 60, Q = 120 (c) H= 60, Q = 480 (c) H = 120, Q = 120 (d) H = 120, Q = 30 %3D %3D %3Darrow_forwardA centrifugal pump is used to pump water through horizontal distance of 150 meters and then raised to an overhead tank 20 meters above. The pipe is smooth with inside diameter of 50 millimeter. The pump head (meter of water) that will be generated at its exit to deliver water at a flow rate of 0.001 cubic meter per second is Blank 1 meter of water. Use fanning friction factor = 0.0062 Express your answers in whole siginificant figure without decimal value and without unitarrow_forwardConsider a pipe on a horizontal plane: based on Bernoulli's equation A. none of the above B. the inlet velocity will be less than the outlet velocity C. the inlet velocity will be greater than the outlet velocity D. the elevation of the inlet will be greater than that of the outletarrow_forward
- dear sir can you please slove thisarrow_forwardSolution please.arrow_forwardUnderground water is pumped to a pool at a given elevation. The maximum flow rate and the pressure difference across the pump are to be determined. The pump-motor draws 3-kW of power, and is 70% efficient. Then the useful mechanical power it delivers to the fluid isarrow_forward
- Water is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables. b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation! show all steps pleasearrow_forwardWater is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables. b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation!arrow_forwardWater is being pumped the through one inch diameter piping arrangement to a higher elevation (5 meters up). Assume incompressible fluid conditions and some heat losses to the surroundings. At the inlet water pressure is 1 bar, temperature 15C, and volumetric flow rate is 0.02 m3/s. At the exit pressure is 2.2 bar, temperature is 10C and velocity of the stream is 40 m/s. Determine: a.Density of the inlet stream using NIST tables. b.Mass flow rate [kg/s] c.Determine h2 from known p2 and T2 using NIST tables d.Find heat rate removed from Q=m(h1-h2) Use Energy Balance Equation with enthalpy difference and in the units of kW to find pumping power in kW. NOTE: The heat is removed from the system, so it should be negative in your equation! show all steps please thanksarrow_forward
- 5. A tapered pipe, through which water is flowing, is having diameter, 30cm and 20 cm at the cross-sections 1 and 2 respectively. The velocity of water at section 1 is given as 3.5m/s. Find the velocity head at section 1 and 2 and also rate of discharge.arrow_forwardThe water system in a suburban area consists of an old 200mm pipeline 760m long which conveys water from a pump to a reservoir whose water surface is 107m higher than the pump. VWater is pumped at the rate of 0.07 m/s. Delermine the horsepower saved by replacng the old pipe with a new 260mm plpe. Assume the value off as equat to Neglect osses of head except friction headarrow_forwardPiezometric tubes are tapped into a venturi section as shown in the figure. The liquid is water. The upstream piezometric head is 1 m, and the piezometric head at the throat is 0.5 m. The velocity in the throat section at 2 is twice as in the approach section at 1. Find the velocity in the throat section at 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License