Concept explainers
The water at
The initial discharge rate of water via the pipe.
The time taken to empty the swimming pool.
The value of the friction factor.
Answer to Problem 153P
The discharge rate of water via the pipe is
The time taken to empty the swimming pool is
The given value of the friction factor is not accurate and the reasonable value of friction factor is
Explanation of Solution
Given information:
The swimming pool diameter is
The flow is incompressible and turbulent. The difference in elevation between the fountain and the pipe is null. The pressure at the inlet ad the exit is atmospheric in nature.
Write the expression to calculate the energy equation. Assume the effect of kinetic energy correction factor to be negligible.
Here, the inlet pressure is
Write the expression to calculate the exit velocity when time is
Here, he volume flow rate is
Write the expression for the area of cross section.
Here, the diameter of the pipe is
Substitute
Write the expression to calculate the head loss.
Here, the diameter of the pipe is
Write the expression for the elevation at any given time.
Write the expression for the flow rate at any time given.
Substitute
Write the expression to calculate the water amount flowing b=via the pipe for a differential time.
Here, the differential time is
Substitute
Write the expression for the area of the tank.
Here, the diameter of the tank is
Write the expression for the decrease of volume of water in the swimming pool.
Here, the negative change in datum of tank is
Substitute
Integrate Equation (XIII) from
Write the expression to calculate the Reynolds number.
Here, the viscosity of the fluid is
Write the expression for the Colebrook equation.
Here, the friction factor is
Calculation:
Refer to Table A-3, "Properties of saturated water" to obtain the value of
The flow is fully developed making the roughness of the plastic null.
Substitute
Substitute
Consider the time is zero.
Substitute
Substitute
Convert
Substitute
Substitute
Substitute
Substitute
Conclusion:
The discharge rate of water via the pipe is
The time taken to empty the swimming pool is
The given value of the friction factor is not accurate and the reasonable value of friction factor is
Want to see more full solutions like this?
Chapter 8 Solutions
Fluid Mechanics: Fundamentals and Applications
- A liquid food (density = 1200 kg/m³, viscosity = 0.07 Pa s) is to be pumped from an open constant level reservoir (that has a fluid level of 2 m) to another open tank, with the discharge point of the pipe to the second reservoir being 7 m above the level of the fluid in the first constant level reservoir. The liquid is to be pumped via a steel pipeline system at the rate of 40 gallons per minute. The pipeline system consists of a 4-in. nominal diameter suction pipe that is 20 m long and has a fully open diaphragm valve in it while the discharge pipe is a 1-in. nominal diameter pipe that is 30 m long and has two 90 regular threaded elbows in it. Assuming a pump efficiency of 75%, what should be the rating of the pump to accomplish this task?arrow_forwardIn large buildings, hot water in a water tank is circulated through a loop so that the user doesn't have to wait for all the water in long piping to drain before hot water starts coming out. A certain recirculating loop involves 40-m-long, 1.2-cm-diameter plastic (smooth) pipes with six 90° threaded smooth bends and two fully open gate valves. If the average flow velocity through the loop is 2 m/s, determine the required power input for the recirculating pump. Take the average water temperature to be 60°C and the efficiency of the pump to be 70 percent. 1.2 cm Hot Water tank 40 marrow_forwardWater at 15 degrees Celsius is flowing through a 2-in ID smooth pipe. The friction loss for a 100-ft section of the pipe amounts to 4.8 lbf/lbm. Determine the velocity of the flow.arrow_forward
- (a) Water, at 20°C, is being siphoned from a large container through a constant diameter hose, as shown in Figure 3a. The end of the siphon is 2 m below the bottom of the tank. There is no losses along the tube and atmospheric pressure is 101.3 kPa. Determine the maximum hill height, H, over which the water can be siphoned without cavitation occurring. H 5.0 m 2.0 m Figure 3a (b) A 2 cm jet of water issues from a 70 cm diameter tank, as shown in Figure 3b. The flow can be assumed to be irrotational. (i) Show that the velocity of the jet is equal to (2gH). (ii) How long will it take for the water surface in the tank to drop from 3 m to 0.5 m? 70cm H 2cm Figure 3barrow_forwardSolve correctly please. (Gpt/Ai wrong answer not allowed)arrow_forwardShow Complete Solutionarrow_forward
- As shown in figure below, oil can be siphoned from a tank using a flexible hose, provided that the end of the hose at Point B, is below the free surface in the tank at Point A. The maximum elevation of the hose is at Point C. Oil is being siphoned from the tank through a constant-diameter hose. The end of the siphon at Point B is 6.71 meters below the oil top surface level of the tank at Point A. If the gauge pressure at Point C is 90.257 KPa and the density of oil is 890 fraction numerator k g over denominator m cubed end fraction , the vertical distance between Point C and Point B in meters isarrow_forwardAs shown in figure below, oil can be siphoned from a tank using a flexible hose, provided that the end of the hose at Point B, is below the free surface in the tank at Point A. The maximum elevation of the hose is at Point C. Oil is being siphoned from the tank through a constant-diameter hose. The end of the siphon at Point B is 6.71 meters below the oil top surface level of the tank at Point A. If the gauge pressure at Point C is 90.257 KPa and the density of oil is 890 kg , the vertical distance between Point C and Point B in meters is Blank 1 **EXPRESS YOUR ANSWER INTO TWO (2) DECIMAL PLACE** Point C ... Point A (Top surface) OIL Point B (End of the siphon)arrow_forwardTwo water reservoirs A and B are connected to each other through a 40-m-long, 2-cm-diameter cast iron pipe with a sharp-edged entrance. The pipe also involves a swing check valve and a fully open gate valve. The water level in both reservoirs is the same, but reservoir A is pressurized by compressed air while reservoir B is open to the atmosphere at 95 kPa. If the initial flow rate through the pipe is 1.5 L/s, determine the absolute air pressure on top of reservoir A. Take the water temperature to be 10°C.arrow_forward
- An inverted 3-m-high conical container is initially filled with 2-m-high water. At time t = 0, a faucet is opened to supply water into the container at a rate of 3 L/s. At the same time, a 4-cm-diameter hole with a discharge coefficient of 0.90 at the bottom of the container is opened. Determine how long it will take for the water level in the tank to drop to 1-m.arrow_forwardProblem 3. A pump is installed in a 250-m-long pipeline to raise water (v = 1 x 10-6 m²/s) 55 m from a reservoir to an elevated tank. The pipe is ductile iron with a diameter of 80 cm and a flow rate of 2.19 m³/s. The pump is placed outside the supply reservoir with a centerline elevation of 1.5 m below the reservoir water surface. Determine the maximum distance, Lmax, in meters that the pump could be installed away from the supply reservoir (the allowable length of the suction line) without encountering cavitation problems. The required net-positive suction head is NPSH = 4.75 m and the water is at 30° C. Total minor losses for the entire pipeline are 17.8 times the velocity head, including exit loss. Minor losses in the suction line are 5.0 times the velocity head. Use an atmospheric pressure of 101.0 kPa. Lmax 1.50 m 80 cm diameter Parrow_forwardWater is transported by gravity through a 10-cmdiameter 550-m-long plastic pipe with an elevation gradient of 0.01 (i.e., an elevation drop of 1 m per 100 m of pipe length). Taking ? = 1000 kg/m3 and ? = 1 × 10−6 m2/s for water, determine the flow rate of water through the pipe. If the pipe were horizontal, what would the power requirements be to maintain the same flow rate?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY