
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 108CP
To determine
The operating principle of variable-area flow meters (rotameters).
The comparison of rotameters with other types of flow meters with respect to cost, head loss and reliability.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q5/A: A car with a track of 1.5 m and a wheelbase of 2.9 m has a steering gear
mechanism of the Ackermann type. The distance between the front stub axle pivots
is 1.3 m. The length of each track arm is 150 mm, and the length of the track rod is
1.2 m. Find the angle turned through by the outer wheel if the angle turned through
by the inner wheel is 30°.
(6 Marks)
Q5/B: Write True on the correct sentences and False on the wrong sentences
listed below:-
1- In automobiles, the power is transmitted from the gearbox to the differential
through bevel gears.
2- The minimum radius circle drawn to the cam profile is called the base circle.
3- The Proell governor, compared to the Porter governor, has less lift at the same
speed.
4- The balancing of rotating and reciprocating parts of an engine is necessary when
it runs at a slow speed.
(6.5 Marks)
***Best of Luck ***
جامعة بابل
UNIVERSITY OF BABYLON
Examiner:
Mohanad R. Hameed
Head of Department:
Dr. Dhyai H. Jawad
University of Babylon
Collage of Engineering/
Al-Musayab
Department of Automobiles
Mid Examination/ Stage: 3rd
Subject: Theory of Vehicles
Date: 14 \ 4 \2025
Time: 1.5 Hours
2025-2024
Q1: The arms of a Porter governor are 250 mm long. The upper arms are pivoted on
the axis of revolution, but the lower arms are attached to a sleeve at a distance of 50
mm from the axis of rotation. The weight on the sleeve is 600 N and the weight of
each ball is 80 N. Determine the equilibrium speed when the radius of rotation of the
balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, determine
the range of speed for this position.
Q2: In a loaded Proell governor shown in Figure below each ball weighs 3 kg and
the central sleeve weighs 25 kg. The arms are of 200 mm length and pivoted about
axis displaced from the central axis of rotation by 38.5 mm, y=238 mm, x=303.5
mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed.
Fe
mg
E
M
2
Q3: In a spring loaded Hartnell type…
using the theorem of three moments, find all the reactions and supports, I need the calculations only
Chapter 8 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - How does surface roughness affect the pressure...
Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Water at 70F passes through...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 10C (p = 999.7 kg/m3 and = 1.307 ×...Ch. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Air enters a 10-m-long section of a rectangular...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - Consider the fully developed flow of glycerin at...Ch. 8 - The velocity profile for a steady laminar flow in...Ch. 8 - The generalized Bernoulli equation for unsteady...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - Prob. 68CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - Prob. 74PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 76EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Gasoline (p = 680 kg/m3 and v = 4.29 × 10-7 m2/s)...Ch. 8 - Prob. 81EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 83PCh. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 89PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 93PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - In large buildings, hot water in a water tank is...Ch. 8 - Prob. 99PCh. 8 - Two pipes of identical length and material are...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - What is the difference between laser Doppler...Ch. 8 - Prob. 103CPCh. 8 - Prob. 104CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 106CPCh. 8 - Prob. 107CPCh. 8 - Prob. 108CPCh. 8 - A 15-L kerosene tank (p = 820 kg/m3) is filled...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114EPCh. 8 - Prob. 115EPCh. 8 - Prob. 116PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Prob. 121PCh. 8 - Prob. 122EPCh. 8 - Prob. 123PCh. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 125PCh. 8 - Prob. 126PCh. 8 - Prob. 127PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Prob. 129PCh. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 133PCh. 8 - Two pipes of identical diameter and material are...Ch. 8 - Prob. 135PCh. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Consider flow front a reservoir through a...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 142PCh. 8 - Prob. 145EPCh. 8 - Prob. 146EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 148PCh. 8 - Prob. 152PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 155PCh. 8 - Find the total volume flow rate leaving a tank...Ch. 8 - Prob. 158PCh. 8 - Water is siphoned from a reservoir open to the...Ch. 8 - It is a well-known fact that Roman aqueduct...Ch. 8 - In a piping system, what is used to control the...Ch. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Consider laminar flow of water in a...Ch. 8 - Water at 10 C flows in a 1.2-cm-diameter pipe at a...Ch. 8 - Engine oil at 20 C flows in a 15-cm-diamcter pipe...Ch. 8 - Prob. 169PCh. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Prob. 172PCh. 8 - Air at 1 atm and 25 C flows in a 4-cm-diameter...Ch. 8 - Hot combustion 8ases approximated as air at I atm...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - The valve in a piping system cause a 3.1 in head...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 182PCh. 8 - Prob. 183PCh. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q.5: (10 Marks) Select the correct answer (choose 10 only) 1. The forward whirling speed is ......... the static structure tilting speed. (a) Less than (b) Higher than (c) equal to 2. The divergence between the forward and backward whirling speeds increases as: (a) The rotating speed increase (b) the polar moment of inertia increases (c) Both (a) and (b) (d) do not change 3. Increasing the system natural frequency can be done by: (a) add masses (b) adding braces and supports (c) increase damping 4. The amplitude of vibration due to external force can be reduced by: (a) Increasing damping (b) Decreasing damping (c) Increasing mass 5. Tuned absorbers are used to: (a) Shift the natural frequency (b) increase damping (c) Increase stiffness 6. Accelerometers sensors contains: г (a) Piezoelectric materials (b) Magnet and coil (c) coil only 7. Increasing the stiffness of the system causes: (a) Less transmitted force (b) more transmitted force (c) Transmitted force does not change 8. The…arrow_forwardQ.1: (15 Marks) Find the first three natural frequencies and mode shapes of the axial and torsional vibration for a steel shaft free at both ends, having a length of 3 m. Find the subsequent axil motion if the shaft is subjected to the following initial conditions, given that E = 210 GPa, G=80 GPa, p = 7800 kg/m³: f(x)=0 v(x) = {1 2.8arrow_forwardQ.4: (15 Marks) A uniform rotor of mass 500 kg and diametral moment of inertia of 20 kg.m², is supported by identical short bearings of stiffness 1 MN/m in the horizontal and vertical directions. If the distance between the bearings is 0.6 m: (a) What is the corresponding polar moment of inertia if the backward whirling speed is 80% of the static structure tilting natural frequency? (b) Determine the forward whirling speed. 45.27arrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Mid Examination/ Stage: 3rd Subject: Theory of Vehicles Date: 14 \ 4 \2025 Time: 1.5 Hours 2025-2024 Q1: The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of revolution, but the lower arms are attached to a sleeve at a distance of 50 mm from the axis of rotation. The weight on the sleeve is 600 N and the weight of each ball is 80 N. Determine the equilibrium speed when the radius of rotation of the balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, determine the range of speed for this position. Q2: In a loaded Proell governor shown in Figure below each ball weighs 3 kg and the central sleeve weighs 25 kg. The arms are of 200 mm length and pivoted about axis displaced from the central axis of rotation by 38.5 mm, y=238 mm, x=303.5 mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed. Fe mg E M 2 Q3: In a spring loaded Hartnell type…arrow_forwardQ.2: (15 Marks) = 1400 For the following system, determine the first natural frequency using Dunkerley's equation, Given that the disk has moment of inertia J = 2 kg.m², the shaft has G = 20 GPa, p kg/m³, polar moment of cross-sectional area of the shaft Ip = 8×108 m². 500 mm 220 mm k=200 N/m FOF m=1 kg 14.14 56.56. W слarrow_forwardQ.2: (15 Marks) = 1400 For the following system, determine the first natural frequency using Dunkerley's equation, Given that the disk has moment of inertia J = 2 kg.m², the shaft has G = 20 GPa, p kg/m³, polar moment of cross-sectional area of the shaft Ip = 8×108 m². 500 mm 220 mm k=200 N/m FOF m=1 kg 14.14 56.56. W слarrow_forwardQ1: In Figure below, pinion A having 15 teeth is fixed to motor shaft. Za-20, Z-15, where B and C are a compound gear wheel. Wheel E is keyed to the machine shaft. Arm F rotates about the same shaft on which A is fixed and carries the compound wheel B, C. If the motor runs at 1200 rpm counter-clockwise, find (a) the speed of the machine shaft and (b) ratio of the reduction gear. C B D Q1: A compound epicyclic gear is shown diagrammatically in Figure below. The gears A, D and E are free to rotate on the axis P. The compound gear B and C rotate together on the axis Q at the end of arm F. All the gears have equal pitch. The number of external teeth on the gears A, B and C are 18, 45 and 21 respectively. The gears D and E are annular gears. The gear A rotates at 100 r.p.m. in the anticlockwise direction and the gear D rotates at 450 r.p.m. clockwise. Find the speed and direction of the arm and the gear E. D E A P F LL B Carrow_forwardCalculate the force in cable AB and the angle θ for the support system shown. Round your final answers to two decimal places.arrow_forward1.53 In the steel structure shown, a 6-mm-diameter pin is used at C and 10-mm-diameter pins are used at B and D. The ultimate shearing stress is 150 MPa at all connections, and the ultimate normal stress is 400 MPa in link BD. Knowing that a factor of safety of 3.0 is desired, determine the largest load P that can be applied at A. Note that link BD is not reinforced around the pin holes. Front view D D 6 mm 18 mm B A B Side view 160 mm 120 mm A B Top viewarrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 16: Determine (a) the maximum bending stress, (b)the maximum shearing stress, (c) compressive bending stress atthe roller support, and (d) the shearing stress 1 in below the topsurface of the beam at the location 1 ft to the right of the rollersupport in the simply supported beam shown in Fig. 8-70.ANS: (a) 21,945.313 lb/in2; (b) 1656.25 lb/in2; (c) 10,000 lb/in2; (d) 190.972 lb/in2arrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. 20: A 2022 Porsche 911 (992) GT3 is crossing a 20 ft bridge. The specification of the car is shown below.Determine the maximum shear (in lb) and moment (in lb-ft) on the bridge. ANS: Vmax = 2,680.850 lb ; Mmax = 11,233.13 lb-ftarrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. Answers: P1 = 208.625 KN/M P2 = 281.310 KN/M P = 15.491 KN/M FB = 463.402 MPA FV = 55.034 MPAarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License