
Concept explainers
(a)
The rate of flow of oil through the funnel when diameter of pipe is doubled.
The funnel effectiveness when the diameter of the pipe is doubled.

Answer to Problem 83P
The rate of flow through the funnel is
The funnel effectiveness is
Explanation of Solution
Given information:
The temperature of oil is
Write the expression for the flow rate in the tunnel.
Here, the pipe length is
The exit point is taken as reference level.
Write the expression for the energy equation.
Here, the inlet pressure is
The exit is taken as the reference level; there is no turbine or pump, the flow is frictionless, the correction factor of kinetic energy is unity and the head loss is zero.
The fluid is open to atmosphere at inlet and outlet.
Write the expression for the maximum flow rate.
Write the expression for the funnel effectiveness.
Here, the given flow rate is
Calculation:
Substitute
Therefore, the rate through the funnel is
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the funnel effectiveness is
Conclusion:
Therefore, the rate of flow through the funnel is
Therefore, the funnel effectiveness is
(b)
The rate of flow of oil via the funnel when the length of pipe is tripled and diameter is maintained the same.
The funnel effectiveness when the length of pipe is tripled and diameter is maintained the same.

Answer to Problem 83P
The rate of flow through the funnel is
The funnel effectiveness is
Explanation of Solution
Given information:
The temperature of oil is
Write the expression for the flow rate in the tunnel.
Here, the pipe length is
The exit point is taken as reference level.
Write the expression for the energy equation.
Here, the inlet pressure is
The exit is taken as the reference level; there is no turbine or pump, the flow is frictionless, the correction factor of kinetic energy is unity and the head loss is zero.
The fluid is open to atmosphere at inlet and outlet.
Write the expression for the maximum flow rate.
Write the expression for the funnel effectiveness.
Here, the given flow rate is
Calculation:
Substitute
Therefore, the flow rate through the funnel is
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The rate of flow through the funnel is
The funnel effectiveness is
Want to see more full solutions like this?
Chapter 8 Solutions
Fluid Mechanics: Fundamentals and Applications
- 35. a. Determine B. b. Determine side b. c. Determine side c. 5.330 in.- ZB 73°30'arrow_forwardConsider a 12 cm internal diameter, 14 m long circular duct whose interior surface is wet. The duct is to be dried by forcing dry air at 1 atm and 15 degrees C throught it at an average velocity of 3m/s. The duct passes through a chilled roo, and it remains at an average temp of 15 degrees C at all time. Determine the mass transfer coeeficient in the duct.arrow_forwardnote n=number of link(dont include the ground link (fixed))arrow_forward
- a) Determine state of stress at all points (a, b and c). These points are located on the exteriorsurface of the beam. Point a is located along the centreline of the beam, point b is 15mmfrom the centreline and point c is located on the edge of the beam. Present yourresults in a table and ensure that your sign convention is clearly shownb) Construct Mohrs circle at this point andcalculate the principal stresses and maximum in‐plane shear stress (τmax) at pointc. sketch the resulting state of stress at this point clearly indicating themagnitude of the stresses and any angles associated with the state of stress (principal ormaximum in‐plane shear).arrow_forwardparts e,f,garrow_forwardFigure 9-6 9-49 An aluminum alloy plate with dimensions 20 cm x 10 cm × 2 cm needs to be cast with a secondary dendrite arm spacing of 10-2 cm (refer to Figure 9-6). What mold constant B is required (assume n = 2 )? Secondary dendrite arm spacing (cm) - 10-1 10-2 10-3 10 41 0.1 1 Copper Zinc alloys Aluminum alloys 10 100 1,000 10,000 100,000 Solidification time (s)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





