(a)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval of time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole−induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(b)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(c)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(d)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(e)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
Trending nowThis is a popular solution!
Chapter 7 Solutions
General, Organic, & Biological Chemistry
- Which of the following statements about intermolecular forces is( are) true? a. London dispersion forces are the only type of intermolecular force that nonpolar molecules exhibit. b. Molecules that have only London dispersion forces will always be gases at room temperature (25C). c. The hydrogen-bonding forces in NH3 are stronger than those in H2O. d. The molecules in SO2(g) exhibit dipole-dipole intermolecular interactions. e. CH3CH2CH3 has stronger London dispersion forces than does CH4.arrow_forward8.45 Describe how interactions between molecules affect the vapor pressure of a liquid.arrow_forward8.103 In previous chapters, we have noted that cryolite is used in refining aluminum. Use the web to look up what this addition does for the process, and relate it to the concepts of intermolecular forces from this chapter.arrow_forward
- 8.43 Identify the kinds of intermolecular forces (London dispersion, dipoledipole, or hydrogen bonding) that are the most important in each of the following substances. (a) methane (CH4) , (b) methanol (CH4OH) , (c) chloroform (CHCl3) , (d) benzene (C6H6) , (e) ammonia (NH3) , (f) sulfur dioxide (SO2)arrow_forwardConsider the iodine monochloride molecule, ICI. Because chlorine is more electronegative than iodine, this molecule is a dipole. How would you expect iodine monochloride molecules in the gaseous state to orient themselves with respect to each other as the sample is cooled and the molecules begin to aggregate? Sketch the orientation you would expect.arrow_forward8.79 Most gaseous compounds consist of small molecules, while polymers are never gaseous at room temperature. Explain this observation based on intermolecular forces.arrow_forward
- 8.103 Cryolite (Na3AlF6) is used in refining aluminum. Use the web to look up what this addition does for the process, and relate it to the concepts of intermolecular forces from this chapter.arrow_forwardWhy do liquids have a vapor pressure? Do all liquids have vapor pressures? Explain. Do solids exhibit vapor pressure? Explain. How does vapor pressure change with changing temperature? Explain.arrow_forwardAn amorphous solid can sometimes be converted to a crystalline solid by a process called annealing. Annealing consists of heating the substance to a temperature just below the melting point of the crystalline form and then cooling it slowly. Explain why this process helps produce a crystalline solid.arrow_forward
- What is U when 1.00 mol of liquid water vaporizes at 100C? The heat of vaporization, Hvap, of water at 100C is 40.66 kJ/mol.arrow_forward8.81 Carbon tetrachloride (CCl4) is a liquid at room temperature and pressure, whereas ammonia (NH3) is a gas. How can these observations be rationalized in terms of intermolecular forces?arrow_forwardA 0.250-g chunk of sodium metal is cautiously dropped into a mixture of 50.0 g water and 50.0 g ice, both at 0C. The reaction is 2Na(s)+2H2O(l)2NaOH(aq)+H2(g)H=368kJ Assuming no heat loss to the surroundings, will the ice melt? Assuming the final mixture has a specific heat capacity of 4.18 J/gc, calculate the final temperature. The enthalpy of fusion for ice is 6.02 kJ/mol.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning