Concept explainers
Cable ACB supports a load uniformly distributed along the horizontal as shown. The lowest point C is located 9 m to the right of A. Determine (a) the vertical distance a, (b) the length of the cable, (c) the components of the reaction at A.
(a)
The vertical distance
Answer to Problem 7.116P
The vertical distance
Explanation of Solution
The free body diagram for the portion AC is depicted below:
Refer fig 1,
Write the equation of net force along vertical direction,
Here, the forces are
Write the equation of momentum,
Here, the tension is
The free body diagram for the portion CB is depicted below:
Refer fig 2.
Write the equation of net force along vertical direction,
Here, the forces are
The free body diagram for the entire cable is depicted below:
Refer fig 3.
Write the equation of momentum,
Here, the distance is
Conclusion:
Substitute
Substitute
Thus, the vertical distance
(b)
The length of the cable.
Answer to Problem 7.116P
The length of the cable is
Explanation of Solution
Write the equation of length of the cable
Here, the length of the cable is
Write the equation of the length of the portion AC,
Here, the coordinates are
Write the equation of the length of the portion CB,
Here, the coordinates are
Conclusion:
Substitute
Substitute
Substitute,
Thus, the length of the cable is
(c)
The component of the reaction a A.
Answer to Problem 7.116P
The component of the reaction a A is
Explanation of Solution
Write the equation of vertical component of reaction A
Write the equation of the horizontal component of reaction A
Conclusion:
Substitute
Substitute
Thus, the component of the reaction a A is
Want to see more full solutions like this?
Chapter 7 Solutions
VECTOR MECH....F/ENGNRS-STATICS -CONNECT
- A 14 ft long beam ABC supports a frictionless pulley with 12 in radius at point B, located 10 ft from the left end. The cable DC supports 150 lb weight W as shown. Determine and direction of the reaction at the roller at C. Determine the magnitude and direction of the reaction at pin A.arrow_forwardNiloarrow_forward3.1 A uniform horizontal beam has a length of 8 m and mass of 500 kg. The beam rests on two supports overhanging one by a distance x while the other is at the extreme right-hand end. The loading is 5 tonnes at the left-hand end, 6 tonnes at the mid-point of the beam and 7 tonnes 1 metre from the right-hand end. Determine the value of x if the reaction at the left-hand support is to be twice that at the right-hand support.- Show free-body-diagram and all your workings.arrow_forward
- 2Answer the given problem. Provide a handwritten calculation and use a given, required, solution format.arrow_forwardT 40cm E 45cm-30cm- A OC 750N D Knowing that the pulley at D has a radius of 12cm, determine the components of the reactions at B and E. NOTE: There is no moment reaction at point "C". You should only consider the horizontal and vertical reaction forces.arrow_forwardAnswe should be : C= 59.6 lb at 130 degrees from the positive x-axis. A= 162 lb at 6.47 degrees from the positive x-axisarrow_forward
- Equilibrium of Force Systemsarrow_forward3: A pulley 4 mm in diameter and supporting a load 200 N is mounted at B on horizontal beam as shown in Fig.1. Determine the reaction at A and C. 60 C B 4 mm 2 mm 2 mm 200 N Fig.1arrow_forwardTwo reservours with different liquilds A (s.g 0.8) and B (s.g 1.5) are connected by a 1m square opening hole. The homogeneous cylinder (s.g 2.0), with 1 m long, is used to block the hole. Determine the magnitude and direction of the reactions at the upper and lower edges (s and m) of the opening. B S=0.8 6m A S=1.5 5m VZ m m 450 1marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY