Each of Problems 1 through 6 can be interpreted as describeing the interaction of two species with populations
a) Draw a direction field and describe how solutions seem to behave.
b) Find the critical points.
c) For each critical points, find the corresponding linear sytem. Find the eigenvectors of the linear system, classify each critical points as to type, and determine whether it is asymototically stable, stable, or unstable.
d) Sketch thetrajectories in the neighbourhood of each critical points.
e) Compute and plot enough trajectories of the given system to show clearly the behaviour of the solutions.
f) Determine the limiting behaviour of
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS
Additional Math Textbook Solutions
College Algebra (7th Edition)
Calculus: Early Transcendentals (2nd Edition)
Elementary Statistics: Picturing the World (7th Edition)
Thinking Mathematically (6th Edition)
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
A First Course in Probability (10th Edition)
- For the following systems, the origin is the equilibrium point. 3. a) Write each system in matrix form b) Determine the eigenvalues of A. c) State whether the origin is a stable or unstable equilibrium. d) State whether the origin is a node, saddle point, spiral point, or center. dx dt e) State the equations of the straight-line trajectories and tell whether they are going towards or away from the origin. If none exist, state so. dx dt dy dt = Ax. f) If A has real eigenvalues, then determine the eigenvectors and use diagonalization to solve the system. (See examples in Section 7.4) = 4x - 13y = 2x - 6yarrow_forwardFor the following systems, the origin is the equilibrium point. dx a) Write each system in matrix form = Ax. dt 5. b) Determine the eigenvalues of A. c) State whether the origin is a stable or unstable equilibrium. d) State whether the origin is a node, saddle point, spiral point, or center. e) State the equations of the straight-line trajectories and tell whether they are going towards or away from the origin. If none exist, state so. f) If A has real eigenvalues, then determine the eigenvectors and use diagonalization to solve the system. (See examples in Section 7.4) dx dt dy dt = -3x + 4y = 2x - 5yarrow_forwardFor the following systems, the origin is the equilibrium point. dx a) Write each system in matrix form = Ax. dt b) Determine the eigenvalues of A. c) State whether the origin is a stable or unstable equilibrium. d) State whether the origin is a node, saddle point, spiral point, or center. e) State the equations of the straight-line trajectories and tell whether they are going towards or away from the origin. If none exist, state so. f) If A has real eigenvalues, then determine the eigenvectors and use diagonalization to solve the system. (See examples in Section 7.4) 6. dx dt dy dt = 2x - 8y = x - 2yarrow_forward
- Please help solvearrow_forward(3.3) Find the fixed points of the following dynamical system: -+v +v, v= 0+v? +1, and examine their stability.arrow_forwardGiven the following figure and information, solve for the following: A. The working matrix of the system of differential equations; B. The mathematical model for the amt. of salt in each of the tanks at time, t; C. The amount of salt in tank A at t = 25 minutes if initially, 100 lbs of salt is dissolved in tank A and 50 lbs in tank B and assuming that tank C contains fresh water and that the mixture in each tank is kept uniform by stirring. 4 gal/min Pure H₂O 100 gal A 4 gal/min 150 gal B 4 gal/min 100 gal C 4 gal/minarrow_forward
- Consider the linear system a. Find the eigenvalues and eigenvectors for the coeffhcient matrix. and A2 = For each eigenpair in the previous part, form a solution of y'= Aỹ. Use t as the independent variable in your answers. (t) = and y2(t) = Does the set of solutions you found form a fundamental set (i.e., linearly independent set) of solutions? Choosearrow_forwardThree engineers are independently estimating the spring constant of a spring, using the linear model specified by Hooke’s law. Engineer A measures the length of the spring under loads of 0, 1, 2, 4, and 6 lb, for a total of five measurements. Engineer B uses the same loads, but repeats the experiment twice, for a total of 10 independent measurements. Engineer C uses loads of 0, 2, 4, 8, and 12 lb, measuring once for each load. The engineers all use the same measurement apparatus and procedure. Each engineer computes a 95% confidence interval for the spring constant. If the width of the interval of engineer A is divided by the width of the interval of engineer B, the quotient will be approximatelyarrow_forwardThree engineers are independently estimating the spring constant of a spring, using the linear model specified by Hooke’s law. Engineer A measures the length of the spring under loads of 0, 1, 3, 4, and 6 lb, for a total of five measurements. Engineer B uses the same loads, but repeats the experiment twice, for a total of 10 independent measurements.Engineer C uses loads of 0, 2, 6, 8, and 12 lb, measuring once for each load. The engineers all use the same measurement apparatus and procedure. Each engineer computes a 95% confidence interval for the spring constant. a) If the width of the interval of engineer A is divided by the width of the interval of engineer B, the quotient will be approximately _____. b) If the width of the interval of engineer A is divided by the width of the interval of engineer C, the quotient will be approximately __________. c) Each engineer computes a 95% confidence interval for the length of the spring under a load of 2.5 lb. Which interval is most likely to…arrow_forward
- Find the equilibrium points and linearize the system—compute eigenvalues at each point. Note: there are THREE equilibrium points for this nonlinear system!arrow_forwardConsider the discrete-time dynamical system modeling the concentration of a chemical in a lung. (Note: round all values at the end of the calculations and use 4 decimal places.)ct+1 = (1-p)ct + pβLet V = 2 L, W = 1 L, and β = 6 mmol/LIf c0 = 7 mmol/L, iterate to find the following values:c1 = ____mmol/Lc2 = ____mmol/Lc3 = ____mmol/Lc4 = ____mmol/LFind the equilibrium of this system:c* = ____mmol/Larrow_forward1. For the system below, find the general solution, sketch the trajectories, being careful to include the eigenvector directions, and classify the type of fixed point: x = x, ÿ y = 2x - 5y.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage