In each of Problems
(a) Determine all critical points of the given system of equations.
(b) Find the corresponding linear system near each critical point.
(c) Find the eigenvalues of each linear system. What conclusions can you then draw about the nonlinear system?
(d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend them in those cases where the linear system does not provide definite information about the nonlinear system.
(e) Draw a sketch of, or describe in words, the basin of attraction of each asymptotically stable critical point.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Precalculus: Mathematics for Calculus (Standalone Book)
Probability And Statistical Inference (10th Edition)
Pre-Algebra Student Edition
Thinking Mathematically (6th Edition)
College Algebra with Modeling & Visualization (5th Edition)
- 4. Solve the system dt -1 with a1 (0) = 1 and 2(0) = -1.arrow_forward(3.3) Find the fixed points of the following dynamical system: -+v +v, v= 0+v? +1, and examine their stability.arrow_forwardConsider the following system of coupled second-order equations, x + 4x1 = x2 x2 + 4x2 0. Re-write this system of second order equations as a system of first order equations. Compute the solution for the initial condition x1(0) = 1, x1(0) = 0, x2(0) compute the (complex) Jordan normal form for the system. Note: you should find that the solution grows linearly in time which is indicative of a resonance in the system. = 1, x2(0) 0. Thenarrow_forward
- Please help with my homeworkarrow_forwardIn each of Problems 5 and 6 the coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text. For each system: Ga. Draw a direction field. b. Find the general solution of the given system of equations. G c. Draw a few of the trajectories. 4 -3 8 -6 5. x' = Xarrow_forward1. For the system below, find the general solution, sketch the trajectories, being careful to include the eigenvector directions, and classify the type of fixed point: x = x, ÿ y = 2x - 5y.arrow_forward
- The coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text. For each system: Find the general solution of the given system of equations.arrow_forwardConsider the linear system 3 *' = 27 a. Find the eigenvalues and eigenvectors for the coefficient matrix. help (numbers) help (matrices) A1 = , 01 = and help (numbers) help (matrices) 12 = , v2 = Find the real-valued solution to the initial value problem x = -3x1 – 2x2, x = 5x1+3x2, x1(0) = -4, x2(0) = 10. Use t as the independent variable in your answers. help (formulas) T2(t) help (formulas) OK Learn more Cookies help us deliver our services. By using our services, you agree to our use of cookies.arrow_forwardIII. Solve the following linear systems of differential equations. dr₁ dt (a) (b) dx2 dt dx₁ dt dx₂ dt = x1 + 2x₂ = = = 4x1 + 3x2 x₁ - 4x₂ 4x₁ - 7x₂ (c) (d) dx₁ dt dx₂ dt dx₁ dt dx₂ dt = -4x1 + 2x2 = = = 5 2²1 +22 -2x1 - 2x₂ 2x16x₂ X(0) = [-2] X(0) = [1¹]arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning