Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
9th Edition
ISBN: 9781319055967
Author: Moore
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 7.2, Problem 86E
To determine

To test: The comparison of means of the two samples using significance test of pooled methods.

Expert Solution
Check Mark

Answer to Problem 86E

Solution: The data strongly suggests that there is no significant difference between the means of early eaters and late eaters in terms of consumption of fat.

Explanation of Solution

Given: The data on total fats for early eaters and late eaters are provided. The summary of statistics fats consumption by the two groups are provided as:

x¯1=23.1x¯2=21.4s1=12.5s2=8.2

n1=202 n2=200

Explanation:

Calculation: The significance test is to compare the means of two groups in terms of consumption of fats. Hence, the null hypothesis is that the consumption of fats in the two groups is the same as against the alternative that the consumption of fats in the two groups is not same.

Therefore, the hypotheses are formulated as:

H0:μEarly=μLateHa:μEarlyμLate

In the above hypothesis, μEarly represents the average fat consumption of early eaters and μLate represents the average fat consumption of late eaters.

The two-sample t- test statistic for pooled methods is defined as:

t=(x¯1x¯2)(μ1μ2)sp1n1+1n2

where,

x¯1=Sample mean of the fat consumption by early eatersx¯2=Sample mean of the fat consumption by late eaterss1=Sample standard deviation of fat consumption by early eaterss2=Sample standard deviation of fat consumption by late eaters

n1=Sample size of fat consumption by early eatersn2=Sample size of fat consumption by late eatersμ1μ2=Difference of true population meanssp=The pooled sample standard deviation

First, determine the pooled sample standard deviation. The formula for pooled sample standard deviation is defined as:

sp=(n11)s12+(n21)s22n1+n22

Substitute the provided values and determine the pooled sample variance:

sp=[(2021)×(12.52)]+[(2001)×(8.22)]202+2002=44787.01400=10.58

Now, determine the t- statistic. The difference of means is assumed as 0 in the null hypothesis. Substitute the provided values in the above-defined formula to compute the two sample t-statistic. So,

t=(x¯1x¯2)(μ1μ2)sp1n1+1n2=(23.121.4)0(10.58)×1202+1200=1.71.06=1.60

The p-value for the provided two-sided test is calculated as P(T1.60). For the pooled two-sample t-statistic, the degrees of freedom are n1+n22. So, the degrees of freedom are calculated as:

Degrees of freedom=n1+n22 =202+2002=400

So, the degrees of freedom are 400.

The Excel function to determine the p- value from t-test statistic is displayed in the screenshot below:

Introduction to the Practice of Statistics, Chapter 7.2, Problem 86E

Conclusion: Therefore, the p-value is obtained as 0.1104, which is more than 0.05. So, do not reject the null hypothesis and hence it is concluded that the data strongly suggests that there is no significant difference between the means of the two groups in terms of fats consumption.

To determine

To find: A 95% confidence interval for the difference of means between early eaters and late eaters in terms of consumption of fats using pooled methods.

Expert Solution
Check Mark

Answer to Problem 86E

Solution: A 95% confidence interval is (0.3747,3.7747)_.

Explanation of Solution

Calculation: The confidence interval is calculated as:

Confidence interval=(x¯1x¯2)±t*(sp1n1+1n2)

where,

x¯1=Sample mean of the fat consumption by early eatersx¯2=Sample mean of the fat consumption by late eaterss1=Sample standard deviation of fat consumption by early eaterss2=Sample standard deviation of fat consumption by late eaters

n1=Sample size of fat consumption by early eatersn2=Sample size of fat consumption by late eatersμ1μ2=Difference of true population meanssp=The pooled sample standard deviation

The pooled sample variance is obtained as 10.58 in the previous part. The critical value of t for 95% confidence level and 400 degrees of freedom is 1.9659. Substitute the provided values in the above-defined formula to determine the 95% confidence interval for the difference between the mean consumption of fats of two groups. So,

(x¯1x¯2)±t*(sp1n1+1n2)=(23.121.4)±[(1.9659)×(10.58)×1202+1200]=(1.7±2.0747)=(1.72.0747,1.7+2.0747)=(0.3747,3.7747)

Interpretation: Therefore, the 95% confidence interval for the difference between the means is obtained as (0.3747,3.7747).

To determine

To explain: The results obtained in the provided problem with those obtained in Exercise 7.71.

Expert Solution
Check Mark

Answer to Problem 86E

Solution: The results are almost similar to those obtained in Exercise 7.71.

Explanation of Solution

The results of Exercise 7.71 are obtained as:

t=1.62pvalue=0.1081.

The results obtained in this provided problem are:

t=1.62pvalue=0.1104

Therefore, the results are almost similar.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In order to find probability, you can use this formula in Microsoft Excel: The best way to understand and solve these problems is by first drawing a bell curve and marking key points such as x, the mean, and the areas of interest. Once marked on the bell curve, figure out what calculations are needed to find the area of interest. =NORM.DIST(x, Mean, Standard Dev., TRUE). When the question mentions “greater than” you may have to subtract your answer from 1. When the question mentions “between (two values)”, you need to do separate calculation for both values and then subtract their results to get the answer. 1.  Compute the probability of a value between 44.0 and 55.0. (The question requires finding probability value between 44 and 55. Solve it in 3 steps. In the first step, use the above formula and x = 44, calculate probability value. In the second step repeat the first step with the only difference that x=55. In the third step, subtract the answer of the first part from the…
If a uniform distribution is defined over the interval from 6 to 10, then answer the followings: What is the mean of this uniform distribution? Show that the probability of any value between 6 and 10 is equal to 1.0 Find the probability of a value more than 7. Find the probability of a value between 7 and 9.   The closing price of Schnur Sporting Goods Inc. common stock is uniformly distributed between $20 and $30 per share. What is the probability that the stock price will be: More than $27? Less than or equal to $24?   The April rainfall in Flagstaff, Arizona, follows a uniform distribution between 0.5 and 3.00 inches. What is the mean amount of rainfall for the month? What is the probability of less than an inch of rain for the month? What is the probability of exactly 1.00 inch of rain? What is the probability of more than 1.50 inches of rain for the month? The best way to solve this problem is begin by creating a chart. Clearly mark the range, identifying the lower and upper…
Problem 1: The mean hourly pay of an American Airlines flight attendant is normally distributed with a mean of 40 per hour and a standard deviation of 3.00 per hour. What is the probability that the hourly pay of a randomly selected flight attendant is: Between the mean and $45 per hour? More than $45 per hour? Less than $32 per hour?   Problem 2: The mean of a normal probability distribution is 400 pounds. The standard deviation is 10 pounds. What is the area between 415 pounds and the mean of 400 pounds? What is the area between the mean and 395 pounds? What is the probability of randomly selecting a value less than 395 pounds?   Problem 3: In New York State, the mean salary for high school teachers in 2022 was 81,410 with a standard deviation of 9,500. Only Alaska’s mean salary was higher. Assume New York’s state salaries follow a normal distribution. What percent of New York State high school teachers earn between 70,000 and 75,000? What percent of New York State high school…

Chapter 7 Solutions

Introduction to the Practice of Statistics

Ch. 7.1 - Prob. 11UYKCh. 7.1 - Prob. 12UYKCh. 7.1 - Prob. 13UYKCh. 7.1 - Prob. 14ECh. 7.1 - Prob. 15ECh. 7.1 - Prob. 16ECh. 7.1 - Prob. 17ECh. 7.1 - Prob. 18ECh. 7.1 - Prob. 19ECh. 7.1 - Prob. 20ECh. 7.1 - Prob. 21ECh. 7.1 - Prob. 22ECh. 7.1 - Prob. 23ECh. 7.1 - Prob. 24ECh. 7.1 - Prob. 25ECh. 7.1 - Prob. 26ECh. 7.1 - Prob. 27ECh. 7.1 - Prob. 28ECh. 7.1 - Prob. 29ECh. 7.1 - Prob. 30ECh. 7.1 - Prob. 31ECh. 7.1 - Prob. 32ECh. 7.1 - Prob. 33ECh. 7.1 - Prob. 34ECh. 7.1 - Prob. 35ECh. 7.1 - Prob. 36ECh. 7.1 - Prob. 37ECh. 7.1 - Prob. 38ECh. 7.1 - Prob. 39ECh. 7.1 - Prob. 40ECh. 7.1 - Prob. 41ECh. 7.1 - Prob. 42ECh. 7.1 - Prob. 43ECh. 7.1 - Prob. 44ECh. 7.1 - Prob. 45ECh. 7.1 - Prob. 46ECh. 7.1 - Prob. 47ECh. 7.2 - Prob. 48UYKCh. 7.2 - Prob. 49UYKCh. 7.2 - Prob. 50UYKCh. 7.2 - Prob. 51UYKCh. 7.2 - Prob. 52UYKCh. 7.2 - Prob. 53UYKCh. 7.2 - Prob. 54UYKCh. 7.2 - Prob. 55ECh. 7.2 - Prob. 56ECh. 7.2 - Prob. 57ECh. 7.2 - Prob. 58ECh. 7.2 - Prob. 59ECh. 7.2 - Prob. 61ECh. 7.2 - Prob. 62ECh. 7.2 - Prob. 63ECh. 7.2 - Prob. 64ECh. 7.2 - Prob. 65ECh. 7.2 - Prob. 66ECh. 7.2 - Prob. 67ECh. 7.2 - Prob. 68ECh. 7.2 - Prob. 69ECh. 7.2 - Prob. 70ECh. 7.2 - Prob. 71ECh. 7.2 - Prob. 72ECh. 7.2 - Prob. 73ECh. 7.2 - Prob. 74ECh. 7.2 - Prob. 75ECh. 7.2 - Prob. 76ECh. 7.2 - Prob. 77ECh. 7.2 - Prob. 78ECh. 7.2 - Prob. 79ECh. 7.2 - Prob. 80ECh. 7.2 - Prob. 81ECh. 7.2 - Prob. 82ECh. 7.2 - Prob. 83ECh. 7.2 - Prob. 84ECh. 7.2 - Prob. 85ECh. 7.2 - Prob. 86ECh. 7.2 - Prob. 87ECh. 7.2 - Prob. 88ECh. 7.2 - Prob. 89ECh. 7.2 - Prob. 90ECh. 7.2 - Prob. 91ECh. 7.2 - Prob. 92ECh. 7.3 - Prob. 93UYKCh. 7.3 - Prob. 94UYKCh. 7.3 - Prob. 95UYKCh. 7.3 - Prob. 96UYKCh. 7.3 - Prob. 97UYKCh. 7.3 - Prob. 98UYKCh. 7.3 - Prob. 99UYKCh. 7.3 - Prob. 100UYKCh. 7.3 - Prob. 101ECh. 7.3 - Prob. 102ECh. 7.3 - Prob. 103ECh. 7.3 - Prob. 104ECh. 7.3 - Prob. 105ECh. 7.3 - Prob. 106ECh. 7.3 - Prob. 107ECh. 7.3 - Prob. 108ECh. 7.3 - Prob. 109ECh. 7.3 - Prob. 110ECh. 7.3 - Prob. 111ECh. 7.3 - Prob. 112ECh. 7.3 - Prob. 113ECh. 7.3 - Prob. 114ECh. 7.3 - Prob. 115ECh. 7.3 - Prob. 116ECh. 7.3 - Prob. 117ECh. 7.3 - Prob. 118ECh. 7 - Prob. 119ECh. 7 - Prob. 120ECh. 7 - Prob. 121ECh. 7 - Prob. 122ECh. 7 - Prob. 123ECh. 7 - Prob. 124ECh. 7 - Prob. 125ECh. 7 - Prob. 126ECh. 7 - Prob. 127ECh. 7 - Prob. 128ECh. 7 - Prob. 129ECh. 7 - Prob. 130ECh. 7 - Prob. 131ECh. 7 - Prob. 132ECh. 7 - Prob. 133ECh. 7 - Prob. 134ECh. 7 - Prob. 135ECh. 7 - Prob. 136ECh. 7 - Prob. 137ECh. 7 - Prob. 138ECh. 7 - Prob. 139ECh. 7 - Prob. 140ECh. 7 - Prob. 141ECh. 7 - Prob. 142ECh. 7 - Prob. 143ECh. 7 - Prob. 144ECh. 7 - Prob. 145ECh. 7 - Prob. 146ECh. 7 - Prob. 147ECh. 7 - Prob. 148ECh. 7 - Prob. 149E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
F- Test or F- statistic (F- Test of Equality of Variance); Author: Prof. Arvind Kumar Sing;https://www.youtube.com/watch?v=PdUt7InTyc8;License: Standard Youtube License
Statistics 101: F-ratio Test for Two Equal Variances; Author: Brandon Foltz;https://www.youtube.com/watch?v=UWQO4gX7-lE;License: Standard YouTube License, CC-BY
Hypothesis Testing and Confidence Intervals (FRM Part 1 – Book 2 – Chapter 5); Author: Analystprep;https://www.youtube.com/watch?v=vth3yZIUlGQ;License: Standard YouTube License, CC-BY
Understanding the Levene's Test for Equality of Variances in SPSS; Author: Dr. Todd Grande;https://www.youtube.com/watch?v=udJr8V2P8Xo;License: Standard Youtube License