a)
The average temperature of the room after 30 min.
a)
Answer to Problem 206RP
The average temperature of the room after 30 min is
Explanation of Solution
Write the expression for the energy balance equation for closed system without air in the room.
Here, energy transfer into the control volume is
Write the expression to calculate the final vapor quality.
Here, final vapor quality is
Write the expression to calculate the final internal energy of the system.
Here, final internal energy of the system is
Write the expression to calculate the final entropy of the system.
Here, final entropy of the system is
Write the expression to calculate the mass of the steam.
Here, mass of the steam is m, volume of the steam is
Write the expression to calculate the ideal gas equation, to find the mass of the air.
Here, mass of the air is
Write the expression to calculate the total work done by the fan.
Here, rate of work done by fan is
Conclusion:
Substitute 0 for
Here, change in internal energy of system is
From the Table A-6, “Superheated water table”, obtain the following properties of steam at temperature of
From the Table A-6, “Saturated water-Pressure table”, obtain the following properties of steam at pressure of
Here, Saturated liquid specific volume is
Substitute
From the Table A-6, “Saturated water-Pressure table”, obtain the following properties of steam at pressure of
Here, Saturated liquid internal energy is
Substitute
From the Table A-6, “Saturated water-Pressure table”, obtain the following properties of steam at pressure of
Here, Saturated liquid entropy is
Substitute
Substitute
Substitute 0.01388 kg for m,
Substitute
Here, heat transfer in is
From the Table A-1, “the molar mass, gas constant and critical point properties table”, select the gas constant of air as
Substitute
Substitute
From the Table A-2, “the ideal–gas equation specific heats of various common gases table”, select the specific heat at constant pressure for air as
Substitute 12.6 kJ for
Thus, the average temperature of the room after 30 min is
b)
The entropy change of the steam.
b)
Answer to Problem 206RP
The entropy change of the steam is
Explanation of Solution
Write the expression to calculate the change of entropy of the steam.
Here, mass of the steam is m, final entropy is
Conclusion:
Substitute 0.01388 kg for m,
Thus, the entropy change of the steam is
c)
The entropy change of the air.
c)
Answer to Problem 206RP
The entropy change of the air is
Explanation of Solution
Write the expression to calculate the entropy change of air.
Since,
Conclusion:
Substitute 98.5 kg for m,
Thus, the entropy change of the air is
d)
The entropy generation in the turbine.
d)
Answer to Problem 206RP
The entropy generation in the turbine is
Explanation of Solution
Write the expression for the entropy balance equation of the system.
Here, rate of net entropy in is
Conclusion:
Substitute 0 for
Here, entropy change of air is
Substitute
Thus, the total entropy generated during the process is
Want to see more full solutions like this?
Chapter 7 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- Note: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question: (In the image as provided)arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question: The rectangular gate shown below is 3 m wide. Compute the force P needed to hold the gate in the position shown.arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question1: If the following container is 0.6m high, 1.2m wide and half full with water, determine the pressure acting at points A, B, and C if ax=2.6ms^-2.arrow_forward
- Please read the imagearrow_forwardChapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardConsider a large 6-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 × 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. Determine the value of the highest and lowest temperature. The highest temperature is The lowest temperature is °C. °C.arrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel engine please, please explain into detail the difference bewteen the two and referance the a diagram. Please include a sketch or an image of each diagramarrow_forwardDraw left view of the first orthographic projectionarrow_forwardSketch and Describe a timing diagram for a 2 stroke diesel engine emphasis on the 2 stroke as my last answer explained 4 stroke please include a diagram or sketch.arrow_forwardA 4 ft 200 Ib 1000 Ib.ft C 2 ft 350 Ib - за в 2.5 ft 150 Ib 250 Ib 375 300 Ib Replace the force system acting on the frame. shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardA continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ). ive submitted this question twice and have gotten two way different answers. looking for some help thanksarrow_forward15 kg of steel ball bearings at 100 ° C is immersed in 25 kg of water at 20 ° C . Assuming no loss of heat to or from the container, calculate the final temperature of the water after equilibrium has been attained.Specific heat of steel: 0.4857 kJ / kg / ° KSpecific heat of water: 4.187 kJ / kg / ° Karrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY