Concept explainers
A piston–cylinder device contains steam that undergoes a reversible
The net work done and net heat transfer by piston cylinder device.
Answer to Problem 175RP
The net work done by piston cylinder device is
The net heat transfer by piston cylinder device is
Explanation of Solution
Write the expression to calculate the mass of the steam in the cylinder.
Here, mass of the steam is m, initial volume is
Write the expression for the volume at state 3.
Here, volume at state 3 is
Write the expression to calculate the heat transfer in for the isothermal expansion process 1-2.
Here, heat transfer in for process 1-2 is
Write the expression to calculate the work done out for the isothermal expansion process 1-2.
Here, work done out for process 1-2 is
Write the expression to calculate the work done in for the isentropic compression process 2-3.
Here, work done in for process 2-3 is
Write the expression to calculate the work done in for the constant pressure compression process 3-1.
Here, work done in for process 3-1 is
Write the expression to calculate the heat transfer out for the constant pressure compression process 3-1.
Here, heat transfer out for the process 3-1.
Write the expression to calculate the net work done by piston cylinder device.
Here, the net work done is
Write the expression to calculate the net heat transfer by piston cylinder device.
Here, the net heat transfer is
Conclusion:
Refer to Table A-6, “Superheated water”.
Obtain the value of internal energy state 1
Write the formula of interpolation method of two variables.
Here, the variables denoted by x and y are temperature and internal energy.
Show temperature and initial internal energy values from the Table A-6.
Temperature | Internal energy |
300 | 2805.1 |
350 | ? |
400 | 2964.9 |
Substitute
The value of internal energy state 1
Refer to Table A-6, “Superheated water”.
Obtain the value of initial molar volume
Show temperature and molar volume values from the Table A-6.
Temperature | Molar volume |
300 | 0.65489 |
350 | ? |
400 | 0.77265 |
Substitute
The value of initial molar volume
Refer to Table A-6, “Superheated water”.
Obtain the value of entropy at state1
Show temperature and entropy values from the Table A-6.
Temperature | Entropy |
300 | 7.5677 |
350 | ? |
400 | 7.9003 |
Substitute
The value of entropy at state1
Similarly,
obtain the values of internal energy at state 2
Obtain the values of internal energy at state 3
Substitute
Substitute
Substitute
Substitute
Substitute
The heat transfer during the process is zero, since isentropic compression process, entropy remains constant.
Substitute
Substitute
Substitute
Thus, the net work done by piston cylinder device is
Substitute
The negative sign indicates that the heat transfer occurs from system to surroundings.
Thus, the net heat transfer by piston cylinder device is
Want to see more full solutions like this?
Chapter 7 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- Draw left view of the first orthographic projectionarrow_forwardSketch and Describe a timing diagram for a 2 stroke diesel engine emphasis on the 2 stroke as my last answer explained 4 stroke please include a diagram or sketch.arrow_forwardA 4 ft 200 Ib 1000 Ib.ft C 2 ft 350 Ib - за в 2.5 ft 150 Ib 250 Ib 375 300 Ib Replace the force system acting on the frame. shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forward
- A continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ). ive submitted this question twice and have gotten two way different answers. looking for some help thanksarrow_forward15 kg of steel ball bearings at 100 ° C is immersed in 25 kg of water at 20 ° C . Assuming no loss of heat to or from the container, calculate the final temperature of the water after equilibrium has been attained.Specific heat of steel: 0.4857 kJ / kg / ° KSpecific heat of water: 4.187 kJ / kg / ° Karrow_forwardSketch and explain a PV Diagram and a Temperature Entropy Diagram for a 4 stroke diesel enginearrow_forward
- A continuous flow calorimeter was used to obtain the calorific value of a sample of fuel and the following data collected: Mass of fuel: 2.25 kgInlet water temperature: 11 ° COutlet water temperature 60 ° CQuantity of water: 360 Liters Calorimeter efficiency: 85%Calculate the calorific value of the sample ( kJ / kg ).arrow_forwardChapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardmylabmastering.pearson.com Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... P Pearson MyLab and Mastering Scoresarrow_forwardanswer the fallowing Brake Specific Fuel Consumption - 0.3 kg/kwh, Mechanical Efficiency- 90% Calorific Value of Fuel -45 MJ/kg. Given these values, find the indicated power, indicated thermal efficiency and brake thermal efficiencyarrow_forwardProblem 6. The circular plate shown rotates about its vertical diameter. At the instant shown, the angular velocity ₁ of the plate is 10 rad/s and is decreasing at the rate of 25 rad/s². The disk lies in the XY plane and Point D of strap CD moves upward. The relative speed u of Point D of strap CD is 1.5 m/s and is decreasing at the rate of 3 m/s². Determine (a) the velocity of D, (b) the acceleration of D. Answers: =0.75 +1.299]-1.732k m/s a=-28.6 +3.03-10.67k m/s² 200 mm x Zarrow_forwardProblem 1. The flywheel A has an angular velocity o 5 rad/s. Link AB is connected via ball and socket joints to the flywheel at A and a slider at B. Find the angular velocity of link AB and the velocity of slider B at this instant. (Partial Answer: @ABN = -2î + 2.25; red Z -1.2 ft C -7 Y -1.5 ft- B 2.0 ftarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY