THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.13, Problem 190RP
Air enters a two-stage compressor at 100 kPa and 27°C and is compressed to 625 kPa. The pressure ratio across each stage is the same, and the air is cooled to the initial temperature between the two stages. Assuming the compression process to be isentropic, determine the power input to the compressor for a mass flow rate of 0.15 kg/s. What would your answer be if only one stage of compression were used?
FIGURE P7–190
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The compressors of a production facility maintain the compressed-air lines at a (gage) pressure of 700 kPa at 1400-m elevation, where the atmospheric pressure is 85.6 kPa. The average temperature of air is 15°C at the compressor inlet and 25°C in the compressed-air lines. The facility operates 4200 h/yr, and the average price of electricity is $0.10/kWh.
Air (MW=29 g/mol) at 115.00 kPa and 285.00 is compressed steadily to 600.0 kPa. The mass flow rate of the air is 2.00 kg/s and a heat loss of 32.1 kW occurs during the process. You may assume that changes in kinetic and potential energy are negligible, the temperature of the surroundings is 25 ∘C, and that the CP of air is 3.5 R. Given the compressor operates with a second law (reversible) efficiency of 0.60,calculate the following.
What is the actual work interaction term in kW?
What is the actual exit temperature of the air in Celcius?
P6-18 Air flowing at 0.5 m³/min enters a compressor at 101
kPa and 25°C. The air exits at 600 kPa and 300°C. During this
process, 250 W of heat are lost to the environment. What is the
required power input?
Chapter 7 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
Ch. 7.13 - Does a cycle for which Q 0 violate the Clausius...Ch. 7.13 - Does the cyclic integral of heat have to be zero...Ch. 7.13 - Is a quantity whose cyclic integral is zero...Ch. 7.13 - Prob. 4PCh. 7.13 - Prob. 5PCh. 7.13 - How do the values of the integral 12Q/T compare...Ch. 7.13 - Prob. 7PCh. 7.13 - The entropy of a hot baked potato decreases as it...Ch. 7.13 - When a system is adiabatic, what can be said about...Ch. 7.13 - Prob. 10P
Ch. 7.13 - A pistoncylinder device contains helium gas....Ch. 7.13 - A pistoncylinder device contains nitrogen gas....Ch. 7.13 - A pistoncylinder device contains superheated...Ch. 7.13 - The entropy of steam will (increase, decrease,...Ch. 7.13 - During a heat transfer process, the entropy of a...Ch. 7.13 - Steam is accelerated as it flows through an actual...Ch. 7.13 - Heat is transferred at a rate of 2 kW from a hot...Ch. 7.13 - A completely reversible air conditioner provides...Ch. 7.13 - Heat in the amount of 100 kJ is transferred...Ch. 7.13 - In Prob. 719, assume that the heat is transferred...Ch. 7.13 - During the isothermal heat addition process of a...Ch. 7.13 - Prob. 22PCh. 7.13 - During the isothermal heat rejection process of a...Ch. 7.13 - Air is compressed by a 40-kW compressor from P1 to...Ch. 7.13 - Refrigerant-134a enters the coils of the...Ch. 7.13 - A rigid tank contains an ideal gas at 40C that is...Ch. 7.13 - A rigid vessel is filled with a fluid from a...Ch. 7.13 - A rigid vessel filled with a fluid is allowed to...Ch. 7.13 - Prob. 29PCh. 7.13 - One lbm of R-134a is expanded isentropically in a...Ch. 7.13 - Two lbm of water at 300 psia fill a weighted...Ch. 7.13 - A well-insulated rigid tank contains 3 kg of a...Ch. 7.13 - Using the relation ds = (Q/T)int rev for the...Ch. 7.13 - The radiator of a steam heating system has a...Ch. 7.13 - A rigid tank is divided into two equal parts by a...Ch. 7.13 - Prob. 36PCh. 7.13 - An insulated pistoncylinder device contains 5 L of...Ch. 7.13 - Onekg of R-134a initially at 600 kPa and 25C...Ch. 7.13 - Refrigerant-134a is expanded isentropically from...Ch. 7.13 - Refrigerant-134a at 320 kPa and 40C undergoes an...Ch. 7.13 - A rigid tank contains 5 kg of saturated vapor...Ch. 7.13 - A 0.5-m3 rigid tank contains refrigerant-134a...Ch. 7.13 - Steam enters a steady-flow adiabatic nozzle with a...Ch. 7.13 - Steam enters an adiabatic diffuser at 150 kPa and...Ch. 7.13 - R-134a vapor enters into a turbine at 250 psia and...Ch. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - The compressor in a refrigerator compresses...Ch. 7.13 - An isentropic steam turbine processes 2 kg/s of...Ch. 7.13 - Prob. 52PCh. 7.13 - Twokg of saturated water vapor at 600 kPa are...Ch. 7.13 - A pistoncylinder device contains 5 kg of steam at...Ch. 7.13 - Prob. 55PCh. 7.13 - In Prob. 755, the water is stirred at the same...Ch. 7.13 - Prob. 57PCh. 7.13 - Prob. 58PCh. 7.13 - Determine the total heat transfer for the...Ch. 7.13 - Calculate the heat transfer, in kJ/kg. for the...Ch. 7.13 - Prob. 61PCh. 7.13 - An adiabatic pump is to be used to compress...Ch. 7.13 - Prob. 63PCh. 7.13 - Prob. 64PCh. 7.13 - A 30-kg aluminum block initially at 140C is...Ch. 7.13 - A 50-kg copper block initially at 140C is dropped...Ch. 7.13 - A 30-kg iron block and a 40-kg copper block, both...Ch. 7.13 - Prob. 69PCh. 7.13 - Prob. 70PCh. 7.13 - Can the entropy of an ideal gas change during an...Ch. 7.13 - An ideal gas undergoes a process between two...Ch. 7.13 - Prob. 73PCh. 7.13 - Air is expanded from 200 psia and 500F to 100 psia...Ch. 7.13 - Prob. 75PCh. 7.13 - Air is expanded isentropically from 100 psia and...Ch. 7.13 - Which of the two gaseshelium or nitrogenhas the...Ch. 7.13 - Which of the two gasesneon or airhas the lower...Ch. 7.13 - A 1.5-m3 insulated rigid tank contains 2.7 kg of...Ch. 7.13 - An insulated pistoncylinder device initially...Ch. 7.13 - A pistoncylinder device contains 0.75 kg of...Ch. 7.13 - A mass of 25 lbm of helium undergoes a process...Ch. 7.13 - One kg of air at 200 kPa and 127C is contained in...Ch. 7.13 - An insulated rigid tank is divided into two equal...Ch. 7.13 - Air at 27C and 100 kPa is contained in a...Ch. 7.13 - Air at 3.5 MPa and 500C is expanded in an...Ch. 7.13 - Air is compressed in a pistoncylinder device from...Ch. 7.13 - Helium gas is compressed from 90 kPa and 30C to...Ch. 7.13 - Nitrogen at 120 kPa and 30C is compressed to 600...Ch. 7.13 - Five kg of air at 427C and 600 kPa are contained...Ch. 7.13 - Prob. 92PCh. 7.13 - Prob. 93PCh. 7.13 - Prob. 94PCh. 7.13 - The well-insulated container shown in Fig. P 795E...Ch. 7.13 - An insulated rigid tank contains 4 kg of argon gas...Ch. 7.13 - Prob. 97PCh. 7.13 - Prob. 98PCh. 7.13 - Prob. 99PCh. 7.13 - It is well known that the power consumed by a...Ch. 7.13 - Calculate the work produced, in kJ/kg, for the...Ch. 7.13 - Prob. 102PCh. 7.13 - Prob. 103PCh. 7.13 - Saturated water vapor at 150C is compressed in a...Ch. 7.13 - Liquid water at 120 kPa enters a 7-kW pump where...Ch. 7.13 - Water enters the pump of a steam power plant as...Ch. 7.13 - Consider a steam power plant that operates between...Ch. 7.13 - Saturated refrigerant-134a vapor at 15 psia is...Ch. 7.13 - Helium gas is compressed from 16 psia and 85F to...Ch. 7.13 - Nitrogen gas is compressed from 80 kPa and 27C to...Ch. 7.13 - Describe the ideal process for an (a) adiabatic...Ch. 7.13 - Is the isentropic process a suitable model for...Ch. 7.13 - On a T-s diagram, does the actual exit state...Ch. 7.13 - Argon gas enters an adiabatic turbine at 800C and...Ch. 7.13 - Steam at 100 psia and 650F is expanded...Ch. 7.13 - Combustion gases enter an adiabatic gas turbine at...Ch. 7.13 - Steam at 4 MPa and 350C is expanded in an...Ch. 7.13 - Prob. 120PCh. 7.13 - Prob. 121PCh. 7.13 - Refrigerant-134a enters an adiabatic compressor as...Ch. 7.13 - The adiabatic compressor of a refrigeration system...Ch. 7.13 - Prob. 125PCh. 7.13 - Argon gas enters an adiabatic compressor at 14...Ch. 7.13 - Prob. 127PCh. 7.13 - Air enters an adiabatic nozzle at 45 psia and 940F...Ch. 7.13 - An adiabatic diffuser at the inlet of a jet engine...Ch. 7.13 - Hot combustion gases enter the nozzle of a...Ch. 7.13 - The exhaust nozzle of a jet engine expands air at...Ch. 7.13 - Prob. 133PCh. 7.13 - Refrigerant-134a is expanded adiabatically from...Ch. 7.13 - A frictionless pistoncylinder device contains...Ch. 7.13 - Prob. 136PCh. 7.13 - Steam enters an adiabatic turbine steadily at 7...Ch. 7.13 - Prob. 138PCh. 7.13 - Oxygen enters an insulated 12-cm-diameter pipe...Ch. 7.13 - Water at 20 psia and 50F enters a mixing chamber...Ch. 7.13 - Prob. 141PCh. 7.13 - Prob. 142PCh. 7.13 - In a dairy plant, milk at 4C is pasteurized...Ch. 7.13 - Steam is to be condensed in the condenser of a...Ch. 7.13 - An ordinary egg can be approximated as a...Ch. 7.13 - Prob. 146PCh. 7.13 - In a production facility, 1.2-in-thick, 2-ft 2-ft...Ch. 7.13 - Prob. 148PCh. 7.13 - Prob. 149PCh. 7.13 - Prob. 150PCh. 7.13 - Prob. 151PCh. 7.13 - Prob. 152PCh. 7.13 - Prob. 153PCh. 7.13 - Liquid water at 200 kPa and 15C is heated in a...Ch. 7.13 - Prob. 155PCh. 7.13 - Prob. 157PCh. 7.13 - Prob. 158PCh. 7.13 - Prob. 159PCh. 7.13 - Prob. 160PCh. 7.13 - The compressed-air requirements of a plant are met...Ch. 7.13 - Prob. 162PCh. 7.13 - The space heating of a facility is accomplished by...Ch. 7.13 - Prob. 164PCh. 7.13 - Prob. 165PCh. 7.13 - Prob. 166PCh. 7.13 - Prob. 167RPCh. 7.13 - A refrigerator with a coefficient of performance...Ch. 7.13 - What is the minimum internal energy that steam can...Ch. 7.13 - Prob. 170RPCh. 7.13 - What is the maximum volume that 3 kg of oxygen at...Ch. 7.13 - A 100-lbm block of a solid material whose specific...Ch. 7.13 - Prob. 173RPCh. 7.13 - A pistoncylinder device initially contains 15 ft3...Ch. 7.13 - A pistoncylinder device contains steam that...Ch. 7.13 - Prob. 176RPCh. 7.13 - Prob. 177RPCh. 7.13 - Prob. 178RPCh. 7.13 - A 0.8-m3 rigid tank contains carbon dioxide (CO2)...Ch. 7.13 - Air enters the evaporator section of a window air...Ch. 7.13 - Prob. 181RPCh. 7.13 - Prob. 182RPCh. 7.13 - Prob. 183RPCh. 7.13 - Prob. 184RPCh. 7.13 - Helium gas is throttled steadily from 400 kPa and...Ch. 7.13 - Determine the work input and entropy generation...Ch. 7.13 - Prob. 187RPCh. 7.13 - Reconsider Prob. 7187. Determine the change in the...Ch. 7.13 - Prob. 189RPCh. 7.13 - Air enters a two-stage compressor at 100 kPa and...Ch. 7.13 - Three kg of helium gas at 100 kPa and 27C are...Ch. 7.13 - Steam at 6 MPa and 500C enters a two-stage...Ch. 7.13 - Prob. 193RPCh. 7.13 - Prob. 194RPCh. 7.13 - Refrigerant-134a enters a compressor as a...Ch. 7.13 - Prob. 196RPCh. 7.13 - Prob. 197RPCh. 7.13 - Prob. 198RPCh. 7.13 - Prob. 199RPCh. 7.13 - Prob. 200RPCh. 7.13 - Prob. 201RPCh. 7.13 - Prob. 202RPCh. 7.13 - Prob. 203RPCh. 7.13 - Prob. 204RPCh. 7.13 - Prob. 205RPCh. 7.13 - Prob. 206RPCh. 7.13 - Prob. 207RPCh. 7.13 - Prob. 208RPCh. 7.13 - (a) Water flows through a shower head steadily at...Ch. 7.13 - Prob. 211RPCh. 7.13 - Prob. 212RPCh. 7.13 - Prob. 213RPCh. 7.13 - Consider the turbocharger of an internal...Ch. 7.13 - Prob. 215RPCh. 7.13 - Prob. 216RPCh. 7.13 - A 5-ft3 rigid tank initially contains...Ch. 7.13 - Prob. 218RPCh. 7.13 - Show that the difference between the reversible...Ch. 7.13 - Demonstrate the validity of the Clausius...Ch. 7.13 - Consider two bodies of identical mass m and...Ch. 7.13 - Consider a three-stage isentropic compressor with...Ch. 7.13 - Prob. 223RPCh. 7.13 - Prob. 224RPCh. 7.13 - Prob. 225RPCh. 7.13 - The polytropic or small stage efficiency of a...Ch. 7.13 - Steam is condensed at a constant temperature of...Ch. 7.13 - Steam is compressed from 6 MPa and 300C to 10 MPa...Ch. 7.13 - An apple with a mass of 0.12 kg and average...Ch. 7.13 - A pistoncylinder device contains 5 kg of saturated...Ch. 7.13 - Argon gas expands in an adiabatic turbine from 3...Ch. 7.13 - A unit mass of a substance undergoes an...Ch. 7.13 - A unit mass of an ideal gas at temperature T...Ch. 7.13 - Heat is lost through a plane wall steadily at a...Ch. 7.13 - Air is compressed steadily and adiabatically from...Ch. 7.13 - Argon gas expands in an adiabatic turbine steadily...Ch. 7.13 - Water enters a pump steadily at 100 kPa at a rate...Ch. 7.13 - Air is to be compressed steadily and...Ch. 7.13 - Helium gas enters an adiabatic nozzle steadily at...Ch. 7.13 - Combustion gases with a specific heat ratio of 1.3...Ch. 7.13 - Steam enters an adiabatic turbine steadily at 400C...Ch. 7.13 - Liquid water enters an adiabatic piping system at...Ch. 7.13 - Liquid water is to be compressed by a pump whose...Ch. 7.13 - Steam enters an adiabatic turbine at 8 MPa and...Ch. 7.13 - Helium gas is compressed steadily from 90 kPa and...Ch. 7.13 - Helium gas is compressed from 1 atm and 25C to a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a compressor, air enters at a temperature of 100 kPa and 20 ° C and leaves the compressor at 1200 kPa and 300 ° C. Mass flow rate of the air is 0.65 kg / s and 8 kW heat load is thrown to the environment at 20 ° C from the fins on the compressor surface. Calculate (a) the power input to the compressor, (b) the thermal efficiency, and (c) the entropy generated during this process by accepting the specific heat.arrow_forwardNOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C, and 80 m/s and the exit conditions are 30 kPa, 92 percent quality, and 50 m/s. The mass flow rate of the steam is 12 kg/s. The properties of the steam are v = 0.086442 m³/kg, h = 3446 kJ/kg, and h = 2437.7 kJ/kg. P =4 MPa T = 500°C V = 80 m/s Steam m kg/s P2= 30 kPa 12= 0.92 V2= 50 m/s Problem 05.048.b - Turbine flow Determine the power output. (You must provide an answer before moving on to the next part.) The power output is kW.arrow_forward100 kg/s of superheated steam at 653.15 K and 8800 kPa enters a turbine and leaves as saturated steam at 2700 kPa. Determine: 1. Inlet enthalpy: kJ/kg 2. Inlet entropy: kJ/kg.K 3. Outlet temperature: K 4. Total entropy change: kJ/K 5. Total power gained: MWarrow_forward
- An ideal gas expands in an adiabatic turbine from 1200 K and 900 kPa to 800 K. Determine the turbine inlet volume flow rate of the gas, in m3/s, required to produce turbine work output at the rate of 650 kW. The average values of the specific heats for this gas over the temperature range and the gas constant are cp = 1.13 kJ/kg·K, cv = 0.83 kJ/kg·K, and R = 0.30 kJ/kg·K.arrow_forwardAir enters an ideal nozzle at a pressure of 45 psig with a temperature of 1,340°F The pressure at the nozzle exit is 14.925 psia. Determine the increase of kinetic energy of 1 lb of air produced by an isentropic expansion through the nozzlearrow_forwardIt is well-known that the temperature of a gas rises while it is compressed as a result of the energy input in the form of compression work. At high compression ratios, the air temperature may rise above the autoignition temperature of some hydrocarbons, including some lubricating oil. Therefore, the presence of some lubricating oil vapor in highpressure air raises the possibility of an explosion, creating a fire hazard. The concentration of the oil within the compressor is usually too low to create a real danger. However, the oil that collects on the inner walls of exhaust piping of the compressor may cause an explosion. Such explosions have largely been eliminated by using the proper lubricating oils, carefully designing the equipment, intercooling between compressor stages, and keeping the system clean. A compressor is to be designed for an industrial application in Los Angeles. If the compressor exit temperature is not to exceed 250C for safety consideration, determine the maximum…arrow_forward
- Consider the turbocharger of an internal combustion engine. The exhaust gases enter the turbine at 450 °C at a rate of 0.02 kg/s and leave at 400 °C. Air enters the compressor at 70 °C and 95 kPa at a rate of 0.018 kg/s and leaves at 135 kPa. The compressor mechanical efficiency between the turbine and the is 95 percent (5 percent of turbine work is lost during its transmission to the compressor). Using air properties for the exhaust gases, determine (a) the air temperature at the compressor exit and (b) the isentropic efficiency of the compressor. Turbine 400 € Compressor Air, 70°C *alf votearrow_forwardAir enters a compressor steadily at the ambient conditions of 100kPa and 20 degrees celcius and leaves at 900 kPa. Heat is lost from the compressor in the amount of 150kJ/kg and the air experiences an entropy decrease of 0.50kJ/kg*K. Using constant specific heats, determine (a) air exit temperature, (b) work input to the compressor, and (c) entropy generation during the process.arrow_forward4 The suction fan of a building heating system draws ambient air at 100 kPa and 30 °C into a duct of 0.8 m inlet diameter with a mass flow rate of 1.65 kg/s. Within the duct, the air gets heated by a 25.0 kW heater and flows into a manifold with discharge outlet 1 and outlet 2, each of 0.5 m in diameter. A damper is fitted to outlet 2 to adjust the flow area and regulate the air discharge through it. The air temperature and pressure at each outlet are 65 °C and 116 kPa, respectively. The elevation difference between the air inlet and the outlets is negligible. It is given that the entire duct and manifold assembly is perfectly insulated. The air is to be treated as an ideal gas with C=1.005 kJ/kg.K and R=0.287 ki/kg.K. (a) Find the air velocities at the inlet and the two discharge outlets of the heating system with the outlet 2 damper fully open. (b) Calculate the fan power consumption.arrow_forward
- Air is compressed in an adiabatic compressor. Inlet and outlet conditions are 120kPa, 30 oC and 20 m/s; 1.4 MPa, 530 oC and 80 m/s. The surrounding air temperature is 25 oC. The inlet cross-sectional area is 0.013 m2. Assume Cp = 1005 J/kgK, R = 287 J/kgK, k = 1.4. Enter the amount of heat gain by the compressor due to irreversibility resulting from the work transfer to the compressor in kW (correct up to two decimal places.) Use the reversible isothermal work transfer assumption to calculate the heat gain value.arrow_forwardAir enters the compressor of a gas turbine plant at ambient conditions of 100 kPa and 25 ⁰Cwith a low velocity and exits at 1 MPa and 347 ⁰C with a velocity of 90 m/s. The compressionprocess is adiabatic, and the power input is 270. Determine the mass flowrateof the air through the compressor.arrow_forwardNeon gas is to be compressed from 105 kPa and 295 K to 460 kPa and 588 K. A heat loss of 17 kJ/kg occurs during the compression process. What is the required work input to the compressor (kJ/kg)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License