Concept explainers
A piston–cylinder device contains steam that undergoes a reversible

The net work done and net heat transfer by piston cylinder device.
Answer to Problem 175RP
The net work done by piston cylinder device is
The net heat transfer by piston cylinder device is
Explanation of Solution
Write the expression to calculate the mass of the steam in the cylinder.
Here, mass of the steam is m, initial volume is
Write the expression for the volume at state 3.
Here, volume at state 3 is
Write the expression to calculate the heat transfer in for the isothermal expansion process 1-2.
Here, heat transfer in for process 1-2 is
Write the expression to calculate the work done out for the isothermal expansion process 1-2.
Here, work done out for process 1-2 is
Write the expression to calculate the work done in for the isentropic compression process 2-3.
Here, work done in for process 2-3 is
Write the expression to calculate the work done in for the constant pressure compression process 3-1.
Here, work done in for process 3-1 is
Write the expression to calculate the heat transfer out for the constant pressure compression process 3-1.
Here, heat transfer out for the process 3-1.
Write the expression to calculate the net work done by piston cylinder device.
Here, the net work done is
Write the expression to calculate the net heat transfer by piston cylinder device.
Here, the net heat transfer is
Conclusion:
Refer to Table A-6, “Superheated water”.
Obtain the value of internal energy state 1
Write the formula of interpolation method of two variables.
Here, the variables denoted by x and y are temperature and internal energy.
Show temperature and initial internal energy values from the Table A-6.
Temperature | Internal energy |
300 | 2805.1 |
350 | ? |
400 | 2964.9 |
Substitute
The value of internal energy state 1
Refer to Table A-6, “Superheated water”.
Obtain the value of initial molar volume
Show temperature and molar volume values from the Table A-6.
Temperature | Molar volume |
300 | 0.65489 |
350 | ? |
400 | 0.77265 |
Substitute
The value of initial molar volume
Refer to Table A-6, “Superheated water”.
Obtain the value of entropy at state1
Show temperature and entropy values from the Table A-6.
Temperature | Entropy |
300 | 7.5677 |
350 | ? |
400 | 7.9003 |
Substitute
The value of entropy at state1
Similarly,
obtain the values of internal energy at state 2
Obtain the values of internal energy at state 3
Substitute
Substitute
Substitute
Substitute
Substitute
The heat transfer during the process is zero, since isentropic compression process, entropy remains constant.
Substitute
Substitute
Substitute
Thus, the net work done by piston cylinder device is
Substitute
The negative sign indicates that the heat transfer occurs from system to surroundings.
Thus, the net heat transfer by piston cylinder device is
Want to see more full solutions like this?
Chapter 7 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
- A mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forwardMy ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forward
- My ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forwardplease solve this problem step by steparrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning

