A bicycle is turned upside down while its owner repairs a flat tire. A friend spins the other wheel and observes that drops of water fly off tangentially. She measures the heights reached by drops moving vertically (Fig. P7.8). A drop that breaks loose from the tire on one turn rises vertically 54.0 cm above the tangent point. A drop that breaks loose on the next turn rises 51.0 cm above the tangent point. The radius of the wheel is 0.381 m. (a) Why does the first drop rise higher than the second drop? (b) Neglecting air friction and using only the observed heights and the radius of the wheel, find the wheel’s angular acceleration (assuming it to be constant). Figure P7.8 Problems 8 and 69.
A bicycle is turned upside down while its owner repairs a flat tire. A friend spins the other wheel and observes that drops of water fly off tangentially. She measures the heights reached by drops moving vertically (Fig. P7.8). A drop that breaks loose from the tire on one turn rises vertically 54.0 cm above the tangent point. A drop that breaks loose on the next turn rises 51.0 cm above the tangent point. The radius of the wheel is 0.381 m. (a) Why does the first drop rise higher than the second drop? (b) Neglecting air friction and using only the observed heights and the radius of the wheel, find the wheel’s angular acceleration (assuming it to be constant). Figure P7.8 Problems 8 and 69.
Solution Summary: The author explains that the first drop rises higher than the second drop as the tangential velocity of the tire decreases in each subsequent turn.
A bicycle is turned upside down while its owner repairs a flat tire. A friend spins the other wheel and observes that drops of water fly off tangentially. She measures the heights reached by drops moving vertically (Fig. P7.8). A drop that breaks loose from the tire on one turn rises vertically 54.0 cm above the tangent point. A drop that breaks loose on the next turn rises 51.0 cm above the tangent point. The radius of the wheel is 0.381 m. (a) Why does the first drop rise higher than the second drop? (b) Neglecting air friction and using only the observed heights and the radius of the wheel, find the wheel’s angular acceleration (assuming it to be constant).
Figure P7.8
Problems 8 and 69.
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Need help on the following questions on biomechanics. (Please refer to images below)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his handat an angle resulting in the reaction force shown.A) Find the resultant force (acting on the Center of Mass)B) Find the resultant moment (acting on the Center of Mass)C) Draw the resultant force and moment about the center of mass on the figure below. Will the gymnast rotate, translate, or both? And in which direction?
Please help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.