College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 32P
(a)
To determine
The force of the track on the vehicle at the point
A
.
(b)
To determine
The maximum speed the vehicle can have at point
B
for gravity to hold it on the track.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A truck is moving with constant acceleration a up a hill that makes an angle ϕ with the horizontal as in Figure P6.51. A small sphere of mass m is suspended from the ceiling of the truck by a light cord. If the pendulum makes a constant angle theta with the perpendicular to the ceiling, what is a?
A truck is moving with constant acceleration a up a hill that makes an angle Φ with the horizontal as shown. A small sphere of mass m is suspended from the ceiling of the truck by a light cord. If the pendulum makes a constant angle θ with the perpendicular to the ceiling, what is a?
You are playing a game and you push a cart to give it in. speed. The cart starts at the bottom (zero) of a ramp and after reaching the top of the ramp, the cart travels across a horizontal track w/ friction. The mass of the cart is 44 x 10^-3 kg. The ramp is 56 cm high. The length is 70 cm. What can you infer of the intial speed in (m/s)
Chapter 7 Solutions
College Physics
Ch. 7.1 - A rigid body is rotating counterclockwise about a...Ch. 7.1 - Suppose the change in angular position for each of...Ch. 7.2 - Consider again the pairs of angular positions for...Ch. 7.3 - Andrea and Chuck are riding on a merry-go-round....Ch. 7.3 - When the merry-go-round of Quick Quiz 7.4 is...Ch. 7.3 - A racetrack is constructed such that two arcs of...Ch. 7.3 - An object moves in a circular path with constant...Ch. 7.5 - A ball is falling toward the ground. Which of the...Ch. 7.5 - A planet has two moons with identical mass. Moon 1...Ch. 7.5 - Suppose an asteroid has a semimajor axis of 4 AU....
Ch. 7 - A disk rotates about an axis through its center....Ch. 7 - Suppose an alien civilization has a space station...Ch. 7 - If a cars wheels are replaced with wheels of...Ch. 7 - Objects moving along a circular path have a...Ch. 7 - A pendulum consists of a small object called a bob...Ch. 7 - Because of Earths rotation about its axis, you...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - Describe the path of a moving object in the event...Ch. 7 - A pail of water can be whirled in a vertical...Ch. 7 - A car of mass m follows a truck of mass 2m around...Ch. 7 - Is it possible for a car to move in a circular...Ch. 7 - A child is practicing for a BMX race. His speed...Ch. 7 - An object executes circular motion with constant...Ch. 7 - Convert (a) 47.0 to radians, (b) 12.0 rad to...Ch. 7 - A bicycle tire is spinning clockwise at 2.50...Ch. 7 - The tires on a new compact car have a diameter of...Ch. 7 - A potters wheel moves uniformly from rest to an...Ch. 7 - A dentists drill starts from rest. After 3.20 s of...Ch. 7 - A centrifuge in a medical laboratory rotates at an...Ch. 7 - A bicyclist starting at rest produces a constant...Ch. 7 - A bicycle is turned upside down while its owner...Ch. 7 - The diameters of the main rotor and tail rotor of...Ch. 7 - The tub of a washer goes into its spin-dry cycle,...Ch. 7 - A car initially traveling at 29.0 m/s undergoes a...Ch. 7 - A 45.0-cm diameter disk rotates with a constant...Ch. 7 - A rotating wheel requires 3.00 s to rotate 37.0...Ch. 7 - An electric motor rotating a workshop grinding...Ch. 7 - A car initially traveling eastward turns north by...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - (a) What is the tangential acceleration of a bug...Ch. 7 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 7 - One end of a cord is fixed and a small 0.500-kg...Ch. 7 - Human centrifuges are used to train military...Ch. 7 - A 55.0-kg ice skater is moving at 4.00 m/s when...Ch. 7 - A 40.0-kg child swings in a swing supported by two...Ch. 7 - A certain light truck can go around a flat curve...Ch. 7 - A sample of blood is placed in a centrifuge of...Ch. 7 - A 50.0-kg child stands at the rim of a...Ch. 7 - A space habitat for a long space voyage consists...Ch. 7 - An air puck of mass m1 = 0.25 kg is tied to a...Ch. 7 - A snowboarder drops from rest into a halfpipe of...Ch. 7 - A woman places her briefcase on the backseat of...Ch. 7 - A pail of water is rotated in a vertical circle of...Ch. 7 - A 40.0-kg child takes a ride on a Ferris wheel...Ch. 7 - Prob. 32PCh. 7 - (a) Find the magnitude of the gravitational force...Ch. 7 - The International Space Station has a mass of 4.19...Ch. 7 - A coordinate system (in meters) is constructed on...Ch. 7 - Prob. 36PCh. 7 - Objects with masses of 200. kg and 500. kg are...Ch. 7 - Use the data of Table 7.3 to find the point...Ch. 7 - Prob. 39PCh. 7 - Two objects attract each other with a...Ch. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - A satellite of Mars, called Phoebus, has an...Ch. 7 - Prob. 44PCh. 7 - A comet has a period of 76.3 years and moves in an...Ch. 7 - Additional Problems A synchronous satellite. which...Ch. 7 - (a) One of the moons of Jupiter, named Io, has an...Ch. 7 - Neutron stars are extremely dense objects that are...Ch. 7 - One method of pitching a softball is called the...Ch. 7 - A digital audio compact disc (CD) carries data...Ch. 7 - An athlete swings a 5.00-kg ball horizontally on...Ch. 7 - The dung beetle is known as one of the strongest...Ch. 7 - Prob. 53APCh. 7 - A 0.400-kg pendulum bob passes through the lowest...Ch. 7 - A car moves at speed v across a bridge made in the...Ch. 7 - Keratinocytes are the most common cells in the...Ch. 7 - Because of Earths rotation about its axis, a point...Ch. 7 - A roller coaster travels in a circular path, (a)...Ch. 7 - In Robert Heinleins The Moon Is a Harsh Mistress,...Ch. 7 - A model airplane of mass 0.750 kg flies with a...Ch. 7 - In a home laundry dryer, a cylindrical tub...Ch. 7 - Casting of molten metal is important in many...Ch. 7 - A skier starts at rest at the top of a large...Ch. 7 - A stuntman whose mass is 70 kg swings from the end...Ch. 7 - Suppose a 1 800-kg car passes over a bump in a...Ch. 7 - The pilot of an airplane executes a constant-speed...Ch. 7 - Prob. 67APCh. 7 - A coin rests 15.0 cm from the center of a...Ch. 7 - A 4.0-kg object is attached to a vertical rod by...Ch. 7 - A 0.275-kg object is swung in a vertical circular...Ch. 7 - (a) A luggage carousel at an airport has the form...Ch. 7 - The maximum lift force on a bat is proportional to...Ch. 7 - In a popular amusement park ride, a rotating...Ch. 7 - A massless spring of constant k = 78.4 N/m is...Ch. 7 - A 0.50-kg ball that is tied to the end of a 1.5-m...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The heaviest watermelon weighed in at 159 kg (350.5 lbs.) and was grown by Chris Kent (USA) of Sevierville, Tennessee. Chris releases the watermelon from rest from the top of a 150.0m tall building by a small crane. We neglect air resistance. If needed, use 9.80 m/s2 for the magnitude of g. What is the time it takes to hit the ground after being released and what will be the final impact velocity when it hits the ground? Report answers to 3 sig figs.arrow_forwardIn the situation below, m1=20 kg and m2=10 kg. The masses are at rest. A) What is the minimum coefficient of friction between the incline and m1? B) The sting and cut and m1 slides down the incline. What is its speed when it reaches the bottom? The block is initially at height of 10 meters.arrow_forwardA 10KN racing car is traveling at 90kph when it enters the semicircular curve (R=100m). The driver increases the speed at a uniform rate and leaves the curve at 126 kph. Determine the normal outward force acting on the car when it is in the middle of the curve. Hint: Normal acceleration = V^2/R Normal Outward Force Mass x Normal Acceleration. O 12,487.26 N O 9.174.31 N O 9,429.15 N O 6,371.05 Narrow_forward
- A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?escvesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=4.10×106 g/m3ρ=4.10×106 g/m3 and volume ?=1.25×1012 m3V=1.25×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10−11 N·m2/kg2G=6.67×10−11 N·m2/kg2 .arrow_forwardThe speed of a 110-g toy car at the bottom of a vertical circular portion of the track is 8.25 m/s. If the radius of curvature of this portion of the track is 57.5 cm, what are the magnitude and direction of the force the track exerts on the car? (assume the car's path is in the clockwise direction.)?arrow_forward45. Review. Two constant forces act on an object of mass m = QC 5.00 kg moving in the xy plane as shown in Figure P7.45. Force F, is 25.0 N at 35.0°, and force F, is 42.0 N at 150°. At time t = 0, the object is at the origin and has velocity (4.00i2.50j m/s. (a) Express the two forces in unit-vector other answers notation. Use unit-vector notation for your (b) Find the total force exerted on the object. (c) Find the object's acceleration. Now, considering the instant t = 3.00 s find (d) velocity, (e) its position (f) its kinetic energy from m and (g) its the object's kinetic from 1500 energy m .T. (h) What conclusion can you 35.00 draw x m by comparing the answers to parts (f) and (g)? Figure P7.45arrow_forward
- 36. A truck is moving with S constant acceleration a up a hil that makes an angle with the horizontal as in Figure P6.36. A small sphere of mass m is suspended from the ceiling of the truck by a light cord. If the m Figure P6.36 pendulum makes a constant angle 0 with the perpendicular to the ceiling what is a?arrow_forwardA roller-coaster vehicle has a mass of 509 kg when fully loaded with passengers (see figure). 15 m 10 m (a) If the vehicle has a speed of 20.0 m/s at point A, what is the force of the track on the vehicle at this point? N (b) What is the maximum speed the vehicle can have at point B in order for gravity to hold it on the track? m/sarrow_forwardAn adventurous archeologist (m = 85.5 kg) tries to cross a river by swinging from a vine. The vine is 11.0 m long, and his speed at the bottom of the swing is 7.50 m/s. The archeologist doesn't know that the vine has a breaking strength of 1,000 N. Does he make it safely across the river without falling in? Yes Noarrow_forward
- A car of mass m passes over a hump in a road that follows the arc of a circle of radius R as shown. (a) If the car travels at a speed υ, what force does the road exert on the car as the car passes the highest point of the hump? (b) What If? What is the maximum speed the car can have without losing contact with the road as it passes this highest point?arrow_forwardA 0.400-kg pendulum bob passes through the lowest part of its path at a speed of 3.00 m/s. (a) What is the tension in the pendulum cable at this point if the pendulum is 80.0 cm long? (b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (c) What is the tension in the pendulum cable when the pendulum reaches its highest point?arrow_forwardA makeshift sign hangs by a wire that is extended over an ideal pulley and is wrapped around a large potted plant on the roof as shown in Figure P6.10. When first set up by the shopkeeper on a sunny and dry day, the sign and the pot are in equilibrium. Is it possible that the sign falls to the ground during a rainstorm while still remaining connected to the pot? What would have to be true for that to be possible? FIGURE P6.10 Problems 10 and 11.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning