
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 88AP
Consider a particle on which a force acts that depends on the position of the particle. This force is given by . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-axis.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
For what type of force is it not possible to define a potential energy expression?
Chapter 7 Solutions
University Physics Volume 1
Ch. 7 - Check Your Understanding Can kinetic friction ever...Ch. 7 - Check Your Understanding Can Earth’s gravity ever...Ch. 7 - Check Your Understanding Find the work done by the...Ch. 7 - Check Your Understanding The spring Example 7.5 is...Ch. 7 - Check Your Understanding (a) A car and a truck...Ch. 7 - Check Your Understanding You are rowing a boat...Ch. 7 - Check Your Understanding suppose the radius of the...Ch. 7 - Check Your Understanding Estimate the power...Ch. 7 - Give an example of something we think of as work...Ch. 7 - Give an example of a situation in which there is a...
Ch. 7 - Describe a situation in 4iich a force is exerted...Ch. 7 - A body moves in a circle at constant speed. Does...Ch. 7 - Suppose you throw a ball upward and catch it when...Ch. 7 - Why is it more difficult to do sit-ups while on a...Ch. 7 - As a young man, Tarzan climbed up a vine to reach...Ch. 7 - A particle of m has a velocity of . Is its kinetic...Ch. 7 - One particle has mass mand a second particle has...Ch. 7 - A person drops a pebble of mass m1from a height h,...Ch. 7 - The person shown below does work on the lawn...Ch. 7 - Work done on a system puts energy into it. Work...Ch. 7 - Two marbles of masses mand 2mare dropped from a...Ch. 7 - Compare the work required to accelerate a car of...Ch. 7 - Suppose you are jogging at constant velocity. Are...Ch. 7 - Two forces act to double the speed of a particle,...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Does the work done in lifting an object depend on...Ch. 7 - Can the power expended by a force be negative?Ch. 7 - How can a 50-W light bulb use more energy than a...Ch. 7 - Work How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50 m in...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - A constant 20-N force pushes a small ball in the...Ch. 7 - A toy cart is pulled a distance of 6.0 m in a...Ch. 7 - A 5.0-kg box rests on a horizontal surface. The...Ch. 7 - A sled plus passenger with total mass 50 kg is...Ch. 7 - Suppose that the sled plus passenger of the...Ch. 7 - How much work does the force do on a particle as...Ch. 7 - How much work is done against the gravitationaI...Ch. 7 - It takes 500 J of work to compress a spring 10 cm....Ch. 7 - A bungee cord is essentially a very long rubber...Ch. 7 - A bungee cord exerts a nonlinear elastic force of...Ch. 7 - Engineers desire to model the magnitude of the...Ch. 7 - A particle moving in the xy -plane is subject to a...Ch. 7 - A particle moves along a curved path...Ch. 7 - Kinetic Energy Compare the kinetic energy of a...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Estimate the kinetic energy of a 90,000-ton...Ch. 7 - Calculate the kinetic energies of (a) a 2000.0-kg...Ch. 7 - A 5.0-kg body has three times the kinetic energy...Ch. 7 - An 8.0-g bullet has a speed of 800 m/s. (a) What...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car’s bumper is designed to withstand a 4.0-km/...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A 5.0-kg box has an acceleration of 2.0m/s2 when...Ch. 7 - A constant 10-N horizontal force is applied to a...Ch. 7 - In the preceding problem, the 10-N force is...Ch. 7 - Compare the work required to stop a 100-kg crate...Ch. 7 - A wagon with its passenger sits at the top of a...Ch. 7 - An 8.0-g bullet with a speed of 800 m/s is shot in...Ch. 7 - A 2.0-kg block starts with a speed of 10 m/s at...Ch. 7 - When a 3.0-kg block is pushed against a massless...Ch. 7 - A small block of mass 200 g starts at rest at A,...Ch. 7 - A small object is placed at the top of an incline...Ch. 7 - When released, a 100-g block slides down the path...Ch. 7 - A 0.22LR-caliber bullet like that mentioned in...Ch. 7 - A sled stalls from rest at the top of a...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Fir the useful power output of an elevator...Ch. 7 - (a) How long would it take a 1.50105kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - A man of mass 80 kg runs up a flight of stairs 20...Ch. 7 - The man of the preceding problem consumes...Ch. 7 - An electron in a television tube is accelerated...Ch. 7 - Coal is lifted out of a mine a vertical distance...Ch. 7 - A girl pulls her 15-kg wagon along a flat sidewalk...Ch. 7 - A typical automobile engine has an efficiency of...Ch. 7 - When jogging at 13 km/h on a level surface, a...Ch. 7 - A cart is pulled a distance D on a flat,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which a force acts that...Ch. 7 - A boy pulls a 5-kg cart with a 20-N force at an...Ch. 7 - A crate of mass 200 kg is to be bright from a site...Ch. 7 - At hokey puck of mass 0.17 kg is shot across a...Ch. 7 - A horizontal force of 20 N is required to keep a...Ch. 7 - A 7.0-kg box slides along a horizontal...Ch. 7 - You are driving your car on a straight road with a...Ch. 7 - A crate is being pushed across a rough floor...Ch. 7 - Suppose a horizontal force of 20 N is required to...Ch. 7 - Grains from a hopper falls at a rate of 10 kg/s...Ch. 7 - A cyclist in a race must climb a 5 hill at a speed...Ch. 7 - Shown below is a 40-kg crate that is pushed at...Ch. 7 - The surface of the preceding problem is modified...Ch. 7 - The force F(x) varies with position, as shown...Ch. 7 - Find the work done by the same force in Example...Ch. 7 - Answer the preceding problem using polar...Ch. 7 - Find the work done by the same force in Example...Ch. 7 - Answer the preceding problem using polar...Ch. 7 - Constant power P is delivered to a car of mass m...Ch. 7 - Suppose that the air resistance a car encounters...Ch. 7 - Consider a linear spring, as in Figure 7.7(a),...
Additional Science Textbook Solutions
Find more solutions based on key concepts
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Modified True/False 1. _____ Biofilms of microorganisms form in aquatic environments only.
Microbiology with Diseases by Body System (5th Edition)
Explain all answers clearly, using complete sentence and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
Sketch the following spectra that would be obtained for 2-chloroethanol: a. The 1H NMR spectrum for an anhydrou...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward
- 3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forward
- Pure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward
- 1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward2. A thin Nichrome wire is used in an experiment to test Ohm's law using a power supply ranging from 0 to 12 V in steps of 2 V. Why isn't the graph of I vs V linear? 1. Nichrome wire does obey Ohm's law. Explain how that can that be true given the results abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY