University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 44P
Kinetic Energy
Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at 27,500 km/h.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
need help on first part
its not 220
No chatgpt pls will upvote
No chatgpt pls
Chapter 7 Solutions
University Physics Volume 1
Ch. 7 - Check Your Understanding Can kinetic friction ever...Ch. 7 - Check Your Understanding Can Earth’s gravity ever...Ch. 7 - Check Your Understanding Find the work done by the...Ch. 7 - Check Your Understanding The spring Example 7.5 is...Ch. 7 - Check Your Understanding (a) A car and a truck...Ch. 7 - Check Your Understanding You are rowing a boat...Ch. 7 - Check Your Understanding suppose the radius of the...Ch. 7 - Check Your Understanding Estimate the power...Ch. 7 - Give an example of something we think of as work...Ch. 7 - Give an example of a situation in which there is a...
Ch. 7 - Describe a situation in 4iich a force is exerted...Ch. 7 - A body moves in a circle at constant speed. Does...Ch. 7 - Suppose you throw a ball upward and catch it when...Ch. 7 - Why is it more difficult to do sit-ups while on a...Ch. 7 - As a young man, Tarzan climbed up a vine to reach...Ch. 7 - A particle of m has a velocity of . Is its kinetic...Ch. 7 - One particle has mass mand a second particle has...Ch. 7 - A person drops a pebble of mass m1from a height h,...Ch. 7 - The person shown below does work on the lawn...Ch. 7 - Work done on a system puts energy into it. Work...Ch. 7 - Two marbles of masses mand 2mare dropped from a...Ch. 7 - Compare the work required to accelerate a car of...Ch. 7 - Suppose you are jogging at constant velocity. Are...Ch. 7 - Two forces act to double the speed of a particle,...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Does the work done in lifting an object depend on...Ch. 7 - Can the power expended by a force be negative?Ch. 7 - How can a 50-W light bulb use more energy than a...Ch. 7 - Work How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50 m in...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - A constant 20-N force pushes a small ball in the...Ch. 7 - A toy cart is pulled a distance of 6.0 m in a...Ch. 7 - A 5.0-kg box rests on a horizontal surface. The...Ch. 7 - A sled plus passenger with total mass 50 kg is...Ch. 7 - Suppose that the sled plus passenger of the...Ch. 7 - How much work does the force do on a particle as...Ch. 7 - How much work is done against the gravitationaI...Ch. 7 - It takes 500 J of work to compress a spring 10 cm....Ch. 7 - A bungee cord is essentially a very long rubber...Ch. 7 - A bungee cord exerts a nonlinear elastic force of...Ch. 7 - Engineers desire to model the magnitude of the...Ch. 7 - A particle moving in the xy -plane is subject to a...Ch. 7 - A particle moves along a curved path...Ch. 7 - Kinetic Energy Compare the kinetic energy of a...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Estimate the kinetic energy of a 90,000-ton...Ch. 7 - Calculate the kinetic energies of (a) a 2000.0-kg...Ch. 7 - A 5.0-kg body has three times the kinetic energy...Ch. 7 - An 8.0-g bullet has a speed of 800 m/s. (a) What...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car’s bumper is designed to withstand a 4.0-km/...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A 5.0-kg box has an acceleration of 2.0m/s2 when...Ch. 7 - A constant 10-N horizontal force is applied to a...Ch. 7 - In the preceding problem, the 10-N force is...Ch. 7 - Compare the work required to stop a 100-kg crate...Ch. 7 - A wagon with its passenger sits at the top of a...Ch. 7 - An 8.0-g bullet with a speed of 800 m/s is shot in...Ch. 7 - A 2.0-kg block starts with a speed of 10 m/s at...Ch. 7 - When a 3.0-kg block is pushed against a massless...Ch. 7 - A small block of mass 200 g starts at rest at A,...Ch. 7 - A small object is placed at the top of an incline...Ch. 7 - When released, a 100-g block slides down the path...Ch. 7 - A 0.22LR-caliber bullet like that mentioned in...Ch. 7 - A sled stalls from rest at the top of a...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Fir the useful power output of an elevator...Ch. 7 - (a) How long would it take a 1.50105kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - A man of mass 80 kg runs up a flight of stairs 20...Ch. 7 - The man of the preceding problem consumes...Ch. 7 - An electron in a television tube is accelerated...Ch. 7 - Coal is lifted out of a mine a vertical distance...Ch. 7 - A girl pulls her 15-kg wagon along a flat sidewalk...Ch. 7 - A typical automobile engine has an efficiency of...Ch. 7 - When jogging at 13 km/h on a level surface, a...Ch. 7 - A cart is pulled a distance D on a flat,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which a force acts that...Ch. 7 - A boy pulls a 5-kg cart with a 20-N force at an...Ch. 7 - A crate of mass 200 kg is to be bright from a site...Ch. 7 - At hokey puck of mass 0.17 kg is shot across a...Ch. 7 - A horizontal force of 20 N is required to keep a...Ch. 7 - A 7.0-kg box slides along a horizontal...Ch. 7 - You are driving your car on a straight road with a...Ch. 7 - A crate is being pushed across a rough floor...Ch. 7 - Suppose a horizontal force of 20 N is required to...Ch. 7 - Grains from a hopper falls at a rate of 10 kg/s...Ch. 7 - A cyclist in a race must climb a 5 hill at a speed...Ch. 7 - Shown below is a 40-kg crate that is pushed at...Ch. 7 - The surface of the preceding problem is modified...Ch. 7 - The force F(x) varies with position, as shown...Ch. 7 - Find the work done by the same force in Example...Ch. 7 - Answer the preceding problem using polar...Ch. 7 - Find the work done by the same force in Example...Ch. 7 - Answer the preceding problem using polar...Ch. 7 - Constant power P is delivered to a car of mass m...Ch. 7 - Suppose that the air resistance a car encounters...Ch. 7 - Consider a linear spring, as in Figure 7.7(a),...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Children playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forwardNo chatgpt plsarrow_forward
- need help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forward
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY