(a)
Interpretation:
The value of equilibrium constant,
Concept Introduction:
In an equilibrium constant expression, the powers of the chemical species help in predicting the
(b)
Interpretation:
Whether the reaction,
Concept Introduction:
To predict whether a reaction is endothermic or exothermic, find out the change in enthalpy of the reaction which is obtained by subtracting the activation energy of the backward reaction from the forward reaction. If the enthalpy change is positive, it is an endothermic reaction and if it is negative then it is an exothermic reaction
(c)
Interpretation:
The effect of raising the temperature on the rate constants and equilibrium constant of the reaction has to be predicted.
Concept Introduction:
A reaction is said to be in equilibrium if the rate at which the forward reaction takes place becomes equal to the rate at which the backward reaction takes place. If any of the factors that affect the equilibrium changes, then the reaction shifts in either forward or backward direction so that the equilibrium condition is reestablished.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Which reaction mechanism assumptions are unimportant in describing simple ionic reactions between cations and anions? Why?arrow_forwardAt 1 atm and 25 C, NO2 with an initial concentration of 1.00 M is 3.3103 decomposed into NO and O2. Calculate the value of the equilibrium constant for the reaction. 2NO2(g)2NO(g)+O2(g)arrow_forwardThe direct reaction of iron(III) oxide. Fe2O3, to give iron and oxygen gas is a nonspontaneous reaction; normally, iron combines with oxygen to give rust (the oxide). Yet we do change iron(III) oxide, as iron ore, into iron metal. How is this possible? Explain.arrow_forward
- The following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forwardShow that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation KI(aq)+I2(aq)KI3(aq) give the same expression for the reaction quotient. KI3 is composed of the ions K+ and I3-.arrow_forward
- Cobalt(II) chloride hexahydrate, CoCl26H2O, is a bright pink compound, but in the presence of very dry air it loses water vapor to the air to produce the light blue anhydrous salt CoCl2. Calculate the standard free-energy change for the reaction at 25C: CoCl26H2O(s)CoCl2(s)+6H2O(g) Here are some thermodynamic data at 25C: What is the partial pressure of water vapor in equilibrium with the anhydrous salt and the hexahydrate at 25C? (Give the value in mmHg.) What is the relative humidity of air that has this partial pressure of water? The relative humidity of a sample of air is Relativehumidity=partialpressureofH2O(g)inairvaporpressureofwater100 What do you expect to happen to the equilibrium partial pressure over the hexahydrate as the temperature is raised? Explain.arrow_forwardWhat is the role of the activated complex in a chemical reaction?arrow_forwardThe atmosphere consists of about 80% N2 and 20% O2, yet there are many oxides of nitrogen that are stable and can be isolated in the laboratory. (a) Is the atmosphere at chemical equilibrium with respect to forming NO? (b) If not, why doesnt NO form? If so, how is it that NO can be made and kept in the laboratory for long periods?arrow_forward
- Old-fashioned smelling salts consist of ammonium carbonate, (NH4)2CO3. The reaction for the decomposition of ammonium carbonate (NH4)2CO3(s)2NH3(g)+CO(g)+H2O(g) is endothermic. Would the smell of ammonia increase or decrease as the temperature is increased?arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardWrite equilibrium constant expressions for the following generalized reactions. a. 2X(g)+3Y(g)2Z(g) b. 2X(g)+3Y(s)2Z(g) c. 2X(s)+3Y(s)2Z(g) d. 2X(g)+3Y(g)2Z(s)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning