ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
7th Edition
ISBN: 9781319399849
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7A.3E
(a)
Interpretation Introduction
Interpretation:
The rate at which oxygen reacts in the given reaction has to be determined.
Concept Introduction:
The unique
(b)
Interpretation Introduction
Interpretation:
The rate of formation of water has to be determined.
Concept Introduction:
Refer to part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume that the formation of nitrogen dioxide:
2NO(g) + O2(g)
2NO2(g)
is an elementary reaction. (a) Write the rate law for this
reaction. (b) A sample of air at a certain temperature is
contaminated with 2.0 ppm of NO by volume. Under
these conditions, can the rate law be simplified? If so,
write the simplified rate law. (c) Under the conditions
described in part (b), the half-life of the reaction has been
estimated to be 6.4 × 103 min. What would the half-life
be if the initial concentration of NO were 10 ppm?
(b)
Consider the hypothetical reaction below:
X(9) + 2Y(g)
XY 2 (g)
Forecast the rate of formation of the product when Y reacts with X at the rate of
-15.0 ×10² molL·'s' to produce the product.
The decomposition of XY is second order in XY and has a rate constant of 7.41 × 10−3 L·mol−1·s−1 at a certain temperature, the half-life for this reaction at an initial concentration of 0.101 mol·L−1 1336. A) If the initial concentration of XY is 0.225 mol·L−1, how long will it take for the concentration to decrease to 6.95 × 10−2 mol·L−1 ?, B) If the initial concentration of XY is 0.080 mol·L−1, what is the concentration of XY after 75 s ?
Chapter 7 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
Ch. 7 - Prob. 7A.1ASTCh. 7 - Prob. 7A.1BSTCh. 7 - Prob. 7A.2ASTCh. 7 - Prob. 7A.2BSTCh. 7 - Prob. 7A.3ASTCh. 7 - Prob. 7A.3BSTCh. 7 - Prob. 7A.4ASTCh. 7 - Prob. 7A.4BSTCh. 7 - Prob. 7A.1ECh. 7 - Prob. 7A.2E
Ch. 7 - Prob. 7A.3ECh. 7 - Prob. 7A.4ECh. 7 - Prob. 7A.7ECh. 7 - Prob. 7A.8ECh. 7 - Prob. 7A.9ECh. 7 - Prob. 7A.10ECh. 7 - Prob. 7A.11ECh. 7 - Prob. 7A.12ECh. 7 - Prob. 7A.13ECh. 7 - Prob. 7A.14ECh. 7 - Prob. 7A.15ECh. 7 - Prob. 7A.16ECh. 7 - Prob. 7A.17ECh. 7 - Prob. 7A.18ECh. 7 - Prob. 7B.1ASTCh. 7 - Prob. 7B.1BSTCh. 7 - Prob. 7B.2ASTCh. 7 - Prob. 7B.2BSTCh. 7 - Prob. 7B.3ASTCh. 7 - Prob. 7B.3BSTCh. 7 - Prob. 7B.4ASTCh. 7 - Prob. 7B.4BSTCh. 7 - Prob. 7B.5ASTCh. 7 - Prob. 7B.5BSTCh. 7 - Prob. 7B.1ECh. 7 - Prob. 7B.2ECh. 7 - Prob. 7B.3ECh. 7 - Prob. 7B.4ECh. 7 - Prob. 7B.5ECh. 7 - Prob. 7B.6ECh. 7 - Prob. 7B.7ECh. 7 - Prob. 7B.8ECh. 7 - Prob. 7B.9ECh. 7 - Prob. 7B.10ECh. 7 - Prob. 7B.13ECh. 7 - Prob. 7B.14ECh. 7 - Prob. 7B.15ECh. 7 - Prob. 7B.16ECh. 7 - Prob. 7B.17ECh. 7 - Prob. 7B.18ECh. 7 - Prob. 7B.19ECh. 7 - Prob. 7B.20ECh. 7 - Prob. 7B.21ECh. 7 - Prob. 7B.22ECh. 7 - Prob. 7C.1ASTCh. 7 - Prob. 7C.1BSTCh. 7 - Prob. 7C.2ASTCh. 7 - Prob. 7C.2BSTCh. 7 - Prob. 7C.1ECh. 7 - Prob. 7C.2ECh. 7 - Prob. 7C.3ECh. 7 - Prob. 7C.4ECh. 7 - Prob. 7C.5ECh. 7 - Prob. 7C.6ECh. 7 - Prob. 7C.7ECh. 7 - Prob. 7C.8ECh. 7 - Prob. 7C.9ECh. 7 - Prob. 7C.11ECh. 7 - Prob. 7C.12ECh. 7 - Prob. 7D.1ASTCh. 7 - Prob. 7D.1BSTCh. 7 - Prob. 7D.2ASTCh. 7 - Prob. 7D.2BSTCh. 7 - Prob. 7D.1ECh. 7 - Prob. 7D.2ECh. 7 - Prob. 7D.3ECh. 7 - Prob. 7D.5ECh. 7 - Prob. 7D.6ECh. 7 - Prob. 7D.7ECh. 7 - Prob. 7D.8ECh. 7 - Prob. 7E.1ASTCh. 7 - Prob. 7E.1BSTCh. 7 - Prob. 7E.1ECh. 7 - Prob. 7E.2ECh. 7 - Prob. 7E.3ECh. 7 - Prob. 7E.4ECh. 7 - Prob. 7E.5ECh. 7 - Prob. 7E.6ECh. 7 - Prob. 7E.7ECh. 7 - Prob. 7E.8ECh. 7 - Prob. 7E.9ECh. 7 - Prob. 1OCECh. 7 - Prob. 7.1ECh. 7 - Prob. 7.2ECh. 7 - Prob. 7.3ECh. 7 - Prob. 7.4ECh. 7 - Prob. 7.5ECh. 7 - Prob. 7.6ECh. 7 - Prob. 7.7ECh. 7 - Prob. 7.9ECh. 7 - Prob. 7.11ECh. 7 - Prob. 7.14ECh. 7 - Prob. 7.15ECh. 7 - Prob. 7.17ECh. 7 - Prob. 7.19ECh. 7 - Prob. 7.20ECh. 7 - Prob. 7.23ECh. 7 - Prob. 7.25ECh. 7 - Prob. 7.26ECh. 7 - Prob. 7.29ECh. 7 - Prob. 7.30ECh. 7 - Prob. 7.31E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write a rate law for NO3(g) + O2(g) NO2(g) + O3(g) if measurements show the reaction is first order in nitrogen trioxide and second order in oxygen.arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardThe decomposition of phosphine, a very toxic gas, forms phosphorus and hydrogen in the following reaction: 4PH3(g) -> P4(g)+ 6H2(g) (a) Express the rate of the reaction with respect to each of the reactants and products.(b) if the instantaneous rate of the reaction with respect to PH3 is 0.34 M•S^-1 ,what is the instantaneous rate of the reaction?arrow_forward
- It's just the order 1 to fourarrow_forwardLanthanum(III) phosphate crystallizes as a hemihydrate, LAPO4 · H20. When it is heated, it loses water to give anhydrous lanthanum(III) phosphate: 2(LAPO4 · H2O(s)) → 2 LaPO4 (s) + H20(g) This reaction is first order in the chemical amount of LAPO, · H2O. The rate constant varies with tempera- ture as follows: Temperature (°C) k (s-1) 205 2.3 x 10-4 219 3.69 x 10-4 246 7.75 x 10-4 260 12.3 x 10-4 Compute the activation energy of this reaction.arrow_forwardThe reaction for the Haber process, the industrial production of ammonia, is N2(g) + 3H2(g) → 2NH3(g) Assume that under certain laboratory conditions ammonia is produced at the rate of 6.29 mol L-1 s-1. At what rate is hydrogen consumed?arrow_forward
- The reaction O₂(g) + 2 NO(g) → 2 NO₂(g) was studied at a certain temperature with the following results: (a) What is the rate law for this reaction? O Ratek [0₂(9)] [NO(g)] O Ratek [0₂(9)]² [NO(g)] O Rate = k [0₂(9)] [NO(g)]² O Ratek [0₂(9)]² [NO(g)]² O Ratek [0₂(9)] [NO(g)]³ O Rate = k [O₂(g)]* [NO(g)] (b) What is the value of the rate constant? Experiment [0₂(9)] (M) 0.0235 0.0235 0.0470 0.0470 [NO(g)] (M) 0.0235 0.0470 0.0235 0.0470 Rate (M/S) 0.158 0.633 0.317 1.27 (c) What is the reaction rate when the concentration of O₂(g) is 0.0318 M and that of NO(g) is 0.0649 M if the temperature is the same as that used to obtain the data shown above?arrow_forward(d) High-flying aircraft release NO into the stratosphere, which catalyzes this process. When O3 and NO concentrations are 9 × 1012 molecule/cm3 and 8.8 × 109 molecule/cm3, respectively, what is the rate of O3 depletion? The rate constant k for the rate-determining step is 6 × 10−15 (cm3)2/molecule · s. Give your answer in scientific notation. Use one significant figure in your answer.arrow_forwardConsider the following reaction: 1. 2 N,O5 (g) → 4 NO, (g) + O, (g) The initial concentration of N2O5 was 0.48 mol/L, and 25 minutes after initiating the reaction, all of the N,Os has been consumed. (a) Calculate the average rate of the reaction over this 25-minute time interval. (b) Is it correct to assume that the rate law is Rate = k[N,O5]² based on the balanced chemical equation? Briefly explain your answer.arrow_forward
- The decomposition of NOBr is studied manometrically because the number of moles of gas changes; it cannot be studied colorimetrically because both NOBr and Br2 are reddish-brown. 2NOBr(g) →2NO(g) + Br2(g) Use the data below to make the following determinations: (a) the average rate of decomposition of NOBr over the entire experiment. (b) the average rate of decomposition of NOBr between 2.00 and 4.00 seconds. Time (s) [NOBr] (mol/L) 0.00 0.0100 2.00 0.0071 4.00 0.0055 6.00 0.0045 8.00 0.0038 10.00 0.0033 The rates of decomposition of NOBr are (a) mol L−1 s−1 (b) mol L−1 s−1arrow_forwarda)A nickel catalyst is commonly used in the hydrogenation of ethylene. If the initial concentration of ethylene is 2.75 mol·L−1 and the rate constant for the reaction is 0.0018 mol·L−1·s−1, what is the rate of reaction if it follows a zero-order reaction mechanism? Express your answer to two significant figures. b)Determine the half-life for the reaction in Part B. Express your answer to two significant figures.arrow_forwardA certain decomposition reaction has a half-life that depends on the initial concentration of the reactant, and its rate is observed to slow down as the reaction proceeds. Identify which statement is most likely correct for this reaction and explain why the other statements are incorrect. O2(g) + 2 NO(g) → 2 NO2(g) (i)The half-life of the reaction increases as the initial concentration increases. (ii)A doubling of the initial concentration of the reactant results in a quadrupling of the rate. (iii)A plot of the natural log of the concentration of the reactant as a function of time is linear.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY