Concept explainers
In February
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Physical Chemistry
- What is the freezing point and normal boiling point of a solution made by adding 39 mL of acetone, C3H6O, to 225 mL of water? The densities of acetone and water are 0.790 g/cm3 and 1.00 g/cm3, respectively.arrow_forwardA 1.40-g sample of polyethylene, a common plastic, is dissolved in enough organic solvent to give 100.0 mL of solution. What is the average molar mass of the polymer if the measured osmotic pressure of the solution is 1.86 mm Hg at 25 C?arrow_forwardConsider two solutions, A and B, separated by an osmotic semipermeable membrane that allows only water to pass through, as shown in the diagram in Problem 8-113. Based on each of the following identities for solutions A and B, indicate whether the liquid level in compartment A, with time, will increase, decrease, or not change. a. A = 1.0 M glucose solution and B = 2.0 M glucose solution b. A = 5.0%(m/v) NaCl solution and B = 4.0%(m/v) NaCl solution c. A = 2.0 M Na2SO4 solution and B = 3.0 M KNO3 solution d. A = 2.0 M glucose solution and B = 1.0 M NaCl solutionarrow_forward
- Assume that 30 L of maple sap yields one kilogram of maple syrup (66% sucrose, C12H22O11). What is the molality of the sucrose solution after one fourth of the water content of the sap has been removed?arrow_forwardWhat would be the freezing point of a solution formed by adding 1.0 mole of glucose (a molecular compound) to the following amounts of water? a. 250 g (0.25 kg) b. 500 g (0.500 kg) c. 1000 g (1.000 kg) d. 2000 g (2.000 kg)arrow_forward1. Vapor pressure: Arrange the following aqueous solutions in order of increasing vapor pressure at 25°C: 0.35 m C2H4(OH)2 (ethylene glycol, nonvolatile solute); 0.50 m sugar; 0.20 m KBr; and 0.20 m Na2SO4. C2H4(OH)2 < sugar < KBr < Na2SO4 Na2SO4 < sugar < KBr < C2H4(OH)2 sugar < C2H4(OH)2 < KBr < Na2SO4 KBr < sugar < Na2SO4 < C2H4(OH)2arrow_forward
- Calculate the freezing point of 525 g of water that contains 25.0 g of NaCl. Assume i, the vant Hoff factor, is 1.85 for NaCl.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning