Concept explainers
(a)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.
Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
(b)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.
Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
(c)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.
Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
Want to see more full solutions like this?
Chapter 7 Solutions
Physical Chemistry
- The freezing point of a 0.21 m aqueous solution of H2SO4 is -0.796C. (a) What is i? (b) Is the solution made up primarily of (i) H2SO4 molecules only? (ii) H+ and HSO4- ions? (iii) 2H+ and 1SO42- ions?arrow_forward6-113 List the following aqueous solutions in order of decreasing freezing point: 0.040 M glycerin (C3H8O3) 0.025 M NaBr, and 0.015 M AI(NO3)3 Assume complete dissociation of any salts.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forward
- A 0.109 mol/kg aqueous solution of formic acid, HCOOH, freezes at −0.210 °C. Calculate the percent dissociation of formic acid.arrow_forwardThe freezing point of 0.10 M KHSO3 is -0.38C. Which of the following equations best represents what happens when KHSO3 dissolves in water? (a) KHSO3(s)KHSO3(aq) (b) KHSO3(s) K+(aq)+HSO3(aq) (c) KHSO3(s) K+(aq)+SO32(aq)+ H+(aq)arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forward
- The freezing point of a 0.11 m solution of HNO2 is -0.20C. (a) What is i for the solution? (b) Is the solution made (i) of HNO2 molecules only? (ii) of H+ and NO2- only? (iii) of more HNO2 molecules than H+ ions? (iv) primarily of H+ and NO2- ions with some HNO2 molecules?arrow_forwardButane, C4H10, has been suggested as the refrigerant in household compressors such as those found in air conditioners. (a) To what extent is butane soluble in water? Calculate the butane concentration in water if the pressure of the gas is 0.21 atm. (kH = 0.0011 mol/kgbar at 25 C) (b) If the pressure of butane is increased to 1.0 atm, does the butane concentration increase or decrease?arrow_forward6-43 The label on a sparkling cider says it contains 22.0 g glucose (C6H12O6) 190. mg K+ , and 4.00 mg Na+ per serving of 240. mL of cider. Calculate the molarities of these ingredients in the sparkling cider.arrow_forward
- For each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Oxygen gas in water with P = 1 atm and T = 10C Oxygen gas in water with P = 1 atm and T = 20C b. Nitrogen gas in water with P = 2 atm and T = 50C Nitrogen gas in water with P = 1 atm and T = 70C c. Table salt in water with P = 1 atm and T = 40C Table salt in water with P = 1 atm and T = 70C d. Table sugar in water with P = 3 atm and T = 30C Table sugar in water with P = 1 atm and T = 80Carrow_forward6-74 An osmotic semipermeable membrane that allows only water to pass separates two compartments, A and B. Compartment A contains 0.9% NaCI, and compartment B contains 3% glycerol C3H8O3. (a) In which compartment will the level of solution rise? (b) Which compartment (if either) has the higher osmotic pressure?arrow_forward6-67 Calculate the freezing points of solutions made by dissolving 1.00 mole of each of the following ionic solutes in 1000. g of H2O. (a) NaCI (b) MgCI2 (c) (NH4)2CO3 (d) AI(HCO3)3arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning