Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 7, Problem 7.5QAP
Interpretation Introduction

(a)

Interpretation:

The wavelength of maximum emission of a tungsten filament bulb at 2870 K and 3750 K needs to be calculated.

Introduction:

The Wein’s displacement Law states that the maximum wavelength in micrometers for the radiations of the blackbody is represented as follows:

ΛmaxT = 2.90×103

Here, T is defined as the temperature in Kelvin as it is absolute temperature.

Stefan’s law states that the total quantity of heat energy released per second per unit area by a perfect blackbody is directly proportional/related to the fourth power of the absolute temperature of its surface given by the equation:

Et = aT4

Where a has a value of 5.69×108 Wm-2K-4

Interpretation Introduction

(b)

Interpretation:

The total energy output of the bulb in terms of W/m3 needs to be determined.

Concept introduction:

The Wein’s displacement Law states that the maximum wavelength in micrometers for the radiations of the blackbody is represented as follows:

ΛmaxT = 2.90×103

Here, T is defined as the temperature in Kelvin as it is absolute temperature.

Stefan’s law states that the total quantity of heat energy released per second per unit area by a perfect black body is directly proportional/related to the fourth power of the absolute temperature of its surface given by the equation:

Et = aT4

Where a has a value of 5.69×108 Wm-2K-4

Blurred answer
Students have asked these similar questions
Give detailed Solution with explanation needed with structures. don't give Ai generated solution. avoid handwritten Solution
The acid-base indicator HX undergoes the following reaction in a dilute aqueous solution: HX (color 1) H+ + X- (color 2). The following absorbance data were obtained for a 0.00035 M solution of HX in 0.1 M NaOH and 0.1 M HCI. Measurements were made at wavelengths of 450 nm and 620 nm using a 1.0 cm glass cuvette. 450 620 A(460 nm) A(630 nm) 0.1 M NaOH 0.1 M HCI 0.065 0.435 0.895 0.150 In the 0.1M NaOH solution, the indicator will be almost 100% in the X- form, while in 0.1M HCI, the indicator will be nearly 100% protonated (HX). Calculate the acid dissociation constant for the indicator if a pH=5 buffer solution containing a very small amount of indicator exhibits an absorbance of 0.567 at 450 nm and 0.395 at 620 nm (measured in a 1 cm glass cuvette).
Show work...give the name of the given compound. Don't give Ai generated solution
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,