EBK INTRODUCTION TO CHEMICAL ENGINEERIN
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
Question
Book Icon
Chapter 7, Problem 7.56P

(a)

Interpretation Introduction

Interpretation:

To find the downstream temperature and the rate of entropy generation.

Concept Introduction:

T1=375K

P1=18bar

P2=1.2bar

The properties for ethylene are

ω=0.087

Tc=282.3K

Pc=50.40bar

A=1.424

B=14.394.103

C=4.392.106

D=0

ΔH=(CPig)H(T2T1)+H2RH1R = 0

ΔH=0=MCPH(T1,T2,A,B,C,D).R(T2T1)...+R.Tc.HRB(T2Tc,ωPr2,)R.Tc.HRB(Tr1,ωPr1,)

  ΔS=(R×MCPS(T1,T2,A,B,C,D).ln(T2T1)R.ln(P2P1))...+R×SRB(Tr2,ωPr2,)R.SRB(Tr1,ωPr1,)

ΔS = Change in Entropy

Cp = Molar heat capacity

R = Universal Gas Constant

T1= Initial given temperature = 375 K

P1 = Initial given Pressure = 18 bar

P2 = Final Given Pressure = 1.2 bar

A, B, C, D = Constants for heat capacity of air

A = 1.424

B = 14.394 x 10-3 K-1

C = -4.392 x 10-6 K-2

D = 0

ΔH = Actual Change in Enthalpy

ΔHig = Ideal Gas Change in Enthalpy

W = Power required of the compressor

Tc= Critical Temperature = 282.3 K

Pc = Critical Pressure = 50.4 bar

  ω = 0.087

(a)

Expert Solution
Check Mark

Answer to Problem 7.56P

T2=365.474K

ΔS=22.128Jmol.K

Explanation of Solution

Tr1=T1Tc

Tr1=1.328

  Tr1=P1Pc

Tr1=0.357

Pr2=P2Pc

Pr2=0.024

For throttling process, ΔH=0. assuming to be adiabatic

ΔH=(CPig)H(T2T1)+H2RH1R

Assume that T2=T1

Given

0=MCPH(T1,T2,A,B,C,D).R(T2T1)...+R.Tc.HRB(T2Tc,ωPr2,)R.Tc.HRB(Tr1,ωPr1,)

Where

(Cp)HR=A+B2T0(τ+1)+C3T02(τ2+τ+1)+DτT02=MCPH(T,T0,A,B,C,D)

HRRTC=Pr[0.0831.097Tr1.6+ω(0.1390.894Tr4.2)]=HRB(TrωPr)

Assuming and substituting variables find T2(=T in the above equation)

We get T2= 365.45 K

Tr2=T2Tc

Tr2=1.295

Entropy is given as

ΔS=(CPig)SlnT2T1RlnP2P1+S2RS1R

SRR=Pr[0.675Tr2.6+ω(0.722Tr5.2)]=SRB(Tr,ωP)r

ΔS=(R×MCPS(T1,T2,A,B,C,D).ln(T2T1)R.ln(P2P1))...+R×SRB(Tr2,ωPr2,)R×SRB(Tr1,ωPr1)

Where

SRR=Pr[0.675Tr2.6+ω(0.722T65.2)]=SRB(Tr,ωPr)

(Cpig)R=A+[BT0+(CT02+Dτ2T02)(τ+12)](τ1lnτ)=MCPS(T,T0,A,B,C,D)

Substituting all the values into the above equations,

We get S = 22.13 J/(mol.K)

(b)

Interpretation Introduction

Interpretation

To find the downstream temperature, the rate of entropy generation and power output in kJ/mol.

Pros and cons of throttling valve and adiabatic expander

Concept Introduction:

T1=375K

P1=18bar

P2=1.2bar

The properties for ethylene are

ω=0.087

Tc=282.3K

Pc=50.40bar

A=1.424

B=14.394.103

C=4.392.106

D=0

ΔH=(CPig)H(T2T1)+H2RH1R = 0

0.Jmol=MCPH(T1,T2,A,B,C,D).R(T2T1)...+R.Tc.HRB(T2Tc,ωPr2,)R.Tc.HRB(Tr1,ωPr1,)

ΔS=(R×MCPS(T1,T2,A,B,C,D).ln(T2T1)R.ln(P2P1))...+R×SRB(Tr2,ωPr2R×SRB(Tr1,ωPr1))

ΔS = Change in Entropy

Cp = Molar heat capacity

R = Universal Gas Constant

T1= Initial given temperature = 375 K

P1 = Initial given Pressure = 18 bar

P2 = Final Given Pressure = 1.2 bar

A, B, C, D = Constants for heat capacity of air

A = 1.424

B = 14.394 x 10-3 K-1

C = -4.392 x 10-6 K-2

D = 0

ΔH = Actual Change in Enthalpy

ΔHig = Ideal Gas Change in Enthalpy

W = Power required of the compressor

Tc= Critical Temperature = 282.3 K

Pc = Critical Pressure = 50.4 bar

  ω = 0.087

η = Given efficiency = 0.80

(b)

Expert Solution
Check Mark

Answer to Problem 7.56P

T2=270K

ΔS=7.768Jmol.K

P=3.147kJmol

Pros of expander − Can be used to generate power

Cons of expander − High cost and maintenance

Pros of throttling valve − Temperature of outlet gas is high and can be used for various purposes

Cons of throttling valve − Consumes power

Explanation of Solution

Tr1=T1Tc

Tr1=1.328

  Tr1=P1Pc

Tr1=0.357

Pr2=P2Pc

Pr2=0.024

ΔS=(CPig)SlnT2T1RlnP2P1+S2RS1R

With ΔS=0 for isentropic expansion

Guess: T2=T1

Given

  ΔS=0=(R×MCPS(T1,T2,A,B,C,D).ln(T2T1)R.ln(P2P1))...+SRB(T2Tc,ωPr2,).RSRB(Trl,ωPrl,).R

T2=Find(T2)

T2=219.793K

Tr2=T2Tc

Tr2=0.779

Now calculate the isentropic enthalpy change, ΔHs

HR2=HRB(Tr2,ωPr2,).R.Tc

  ΔHS=[R×MCPH(T1,T2,A,B,C,D).(T2T1)]...+HRB(Tr2,ωPr2).R.TcHRB(Trl,ωPrl,).R.Tc

ΔHS=6.423*103Jmol

Calculate actual enthalpy change using the expander efficiency.

ΔH=ηΔ

HS

ΔH=4.496*103Jmol

Assume T2to satisfy the above value of ΔH by trial and error method,

Given

ηΔHS=MCPH(T1,T2,A,B,C,D).R(T2T1)...+R.Tc.HRB(T2Tc,ωPr2,)R.Tc.HRB(Trl,ωPrl,)

We get T2= 270 K

ΔS at calculated T2 can be found using

ΔS=(R×MCPS(T1,T2,A,B,C,D).ln(T2T1)R.ln(P2P1))...+R×SRB(Tr2,ωPr2,)R×SRB(Trl,ωPrl,)

Substituting the values in the above equation, we get

ΔS =7.768 J/mol.K

Power is given as, P=ηΔH

= 0.7*(-4.496) = -3.147 KJ/mol

Pros of expander − Can be used to generate power

Cons of expander − High cost and maintenance

Pros of throttling valve − Temperature of outlet gas is high and can be used for various purposes

Cons of throttling valve − Consumes power

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please, provide me the solution with details and plot.
Q2/ An adsorption study is set up in laboratory by adding a known amount of activated carbon to six which contain 200 mL of an industrial waste. An additional flask containing 200 mL of waste but no c is run as a blank. Plot the Langmuir isotherm and determine the values of the constants. Flask No. Mass of C (mg) Volume in Final COD Flask (mL) (mg C/L) 1 804 200 4.7 2 668 200 7.0 3 512 200 9.31 4 393 200 16.6 C 5 313 200 32.5 6 238 200 62.8 7 0 200 250
مشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthe
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The