EBK INTRODUCTION TO CHEMICAL ENGINEERIN
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
Question
Book Icon
Chapter 7, Problem 7.18P
Interpretation Introduction

Interpretation:

The gas discharge temperature and the work output of the turbine per mole of the gas under the given conditions need to be calculated

Concept Introduction:

  • For an ideal gas under isentropic adiabatic conditions, the temperature and pressure are related as:
  • T2T1=( P 2 P 1)γ-1/γ(1)

    where, γ = Cp/Cv

  • The isentropic efficiency of a turbine is given as:
  • η=Actual work done by turbine Adiabatic Work =W˙aW˙s ----(3)

    where, the rate of work done is given as:

    W˙ = n˙ΔH -----(4)

    n˙ = molar flow rate

    ΔH = change in enthalpy

    Thus, turbine efficiency is given as:

    η =W˙aW˙s=H2a-H1H2s-H1

    (or) η =ΔHactualΔHadiabatic ----(5)

The gas discharge temperature = 593.8C0

Work output of turbine = -8.78 kJ/mol

Given Information:

Inlet pressure, P1 = 10 bar

Inlet Temperature, T1= 950C0

Outlet pressure, P2 = 1.5 bar

Heat capacity, Cp = 32 J.mol-1.K-1

Turbine efficiency, ? = 77% = 0.77

Explanation:

In this case, the combustion products have been assumed to behave as an ideal gas. The discharge temperature can be deduced from equation (1) and the work output can be deduced from equation (4).

The heat capacity ratio for gas turbine, i.e. ? = 1.33

Calculation:

Step 1:

Calculate the discharge/final temperature, T2

Based on equation (1) we have:

T2T1=( P 2 P 1)γ-1/γ

T2950=(1.510)1.33-1/1.33 =0.625

T2=593.8C0

Step 2:

Calculate the actual enthalpy change

The adiabatic enthalpy change is related to the change in temperature through the specific heat capacity, Cp

ΔHadiabatic = Cp(T2-T1) = 32(593.8-950) = -11.4 kJ/mol

Based on equation (5) the actual enthalpy change is:-

 ΔHactual = η×ΔHadiabatic = 0.77×(-11.4) = -8.78 kJ/mol

Step 3:

Calculate the work output of the turbine

Based on equation (4)

 W˙ = n˙ΔHactual 

W˙n˙= work output = ΔHactual = -8.78 kJ/mol

Thus, the gas discharge temperature = 593.8C0

Work output of turbine = -8.78 kJ/mol

Blurred answer
Students have asked these similar questions
Water is pumped from a large reservoir to a point 75 feet higher than the reservoir. How many feet of head must be added by the pump if 7600 lbm/hr flows through a 6-inch pipe and the frictional head loss is 3 feet? The density of the fluid is 60 lbm/ft³ and the pump efficiency is 70%. Assume the kinetic energy correction factor equals 1.
A firefighter is using a large water tank to supply water for extinguishing a fire. The tank has a small hole at the bottom, and water is leaking out due to gravity. The hole is located 2.5 meters below the water surface inside the tank. a. Determine the speed at which the water exits the hole. Assume there is no air resistance and that the water flow is ideal (neglect viscosity and turbulence). b. If the hole has a diameter of 2 cm, calculate the flow rate (discharge rate) in liters per second.
What kind of boundary must a system have to undergo the stated Interaction with its surroundings if possible ( mention the 3 qualities of the boundary in each case A. WORK INTERACTIONS ONLY B. MASS AND HEAT INTERACTIONS ONLY  C. HEAT INTERACTIONS ONLY  IS THIS POSSIBLE,  EXPLAIN.  D. WORK AND MASS INTERACTIONS ONLY. E. WORK AND HEAT INTERACTIONS ONLY F. MASS INTERACTIONS ONLY. IS THIS POSSIBLE OR NOT. EXPLAIN
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The