Interpretation:
The values of temperature should be determined for specimens made up of tin, molybdenum, iron, gold, zinc, and chromium.
Concept introduction:
At constant stress and elevated temperature, when a progressive deformation occurs in any material or component, it is known as creep deformation.
It is also known as time-dependent deformation because this deformation occurs depending on time for how long the materials are exposed to stress.
Answer to Problem 7.50P
The values of temperature are
Explanation of Solution
With respect to absolute melting temperature, we have below-mentioned formula which can be taken into consideration for determining creep deformation.
Here,
With the help of Appendix-A, 'Selected Physical Properties of Metals', one can get the values of melting points of the given specimens of materials as follow.
Now, by using equation (1), determine the temperature at which the given materials will experience creep deformations.
- For Tin,
- For Molybdenum,
- For Iron,
- For Gold,
- For Zinc,
- For Chromium,
Thus, different temperatures corresponding to given specimen of materials of tin, molybdenum, iron, gold, zinc and chromium at which they experiences creep deformation are
Want to see more full solutions like this?
Chapter 7 Solutions
Essentials Of Materials Science And Engineering, Si Edition
- A left-sided signal x(t)=-ebt u(-t): A right-sided signal x(t)=e¯at u(t) Find Laplace transform of x(t)=u(t)arrow_forwardreading is 0.4 mas SHOWN. Assume h₁ = 0.4 m, h₂ = 0.5 m. (a) Do you know the specific weight of mercury? (b) Do you know the specific weight of gasoline? (c) Do you know the specific weight of oil? (a) YHg = 133,000 (b) Ygas = 6867 (c) Yoil = 8829 eTextbook and Media Part 2 N/m³ N/m³ N/m³ A+ Gasoline t +B Oil -Mercury Attempts: unlimited Did you calculate the pressure difference between two locations using the correct specific weight? Did you assume that the pressures in fluid are the same in a horizontal plane even though they are in different tubes? Are the calculated pressures in a column of fluid always higher at lower elevations? Did you account for the fact that the two horizontal tubes of the U-tube are above the ground? Concepts: The pressure in a fluid is a function of the specific weight of the fluid and the height relative to a reference. Pressure is constant in a horizontal plane of a continuous mass of fluid. (a) What is the initial pressure difference? (PA-PB) (b) What is…arrow_forwardFind the solution of the following Differential Equations 1) "-4y+3y=0 3) "+16y=0 2) y"-16y=0 4) y"-y-6y=0 5) y"+2y=0 7) y"+y=0, (#0) 9) y"-y=0, y(0) = 6, y'(0) = -4 11) y"-4y+3y=0, y(0)=-1, 13) y'(0) = -5 "+2y+2y=0 15) y"-9y=0 17) y"-4y=0 6) y"-2y+2y=0 8) "+4y+5y=0 10) y"-9y=0, y(0) = 2, y'(0) = 0 12) y"-3y+2y= 0, y(0)=-1, y'(0) = 0 14) 4y+4y+y=0 16) "+6y+12y=0 18) 4y+4y+17y=0arrow_forward
- Find Laplace transform of x(t) = −e¯btu(−t) + e¯atu(t) Find Laplace transform of x(t) = u(t)arrow_forwardplease show complete solution, step by step, thanksarrow_forward1. What is the weight of each block shown below in pounds? A) 2’x2’x10’ Steel Bar w=490lb/ft^3 B) 5’x4’x3’ Concrete Block w=150lb/ft^3 A) 3’x10’x2’ Wood block w=50lb/ft^3 2.The 6” thick, 20’x25’ concrete slab weights 150lbs/ft^3 and has an area load of 50lbs/ft^2 (psf). What is the total load of the floor?arrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY