
(a)
Interpretation:
The total number of orbitals in an atom that can have the designation
Concept introduction:
Quantum numbers are a set of four numbers that describe the movement of an electron within an atom. Out of the four, the three quantum numbers that define the shape, size, and orientation of an orbital are the principal quantum number, the orbital
The principal quantum number – The principal quantum number indicates the distance of an electron from the nucleus. As the value of the principal quantum number increases, the distance of the electron from the nucleus increases. The farther the electron is from the nucleus, the higher is the energy of the electron. The principal quantum number is denoted by
The angular momentum quantum number – The orbital angular momentum quantum number defines the shape of the orbital. The value of orbital angular momentum quantum number depends on the value of the principal quantum number. It is denoted by
The magnetic quantum number – The magnetic quantum number determines the total number of orbitals and their orientation within a sub-shell. The magnetic quantum number is represented by the symbol
(b)
Interpretation:
The total number of orbitals in an atom that can have the designation
Concept introduction:
Quantum numbers are a set of four numbers that describe the movement of an electron within an atom. Out of the four, the three quantum numbers that define the shape, size, and orientation of an orbital are the principal quantum number, the orbital angular momentum quantum number, and the magnetic quantum number.
The principal quantum number – The principal quantum number indicates the distance of an electron from the nucleus. As the value of the principal quantum number increases, the distance of the electron from the nucleus increases. The farther the electron is from the nucleus, the higher is the energy of the electron. The principal quantum number is denoted by
The angular momentum quantum number – The orbital angular momentum quantum number defines the shape of the orbital. The value of orbital angular momentum quantum number depends on the value of the principal quantum number. It is denoted by
The magnetic quantum number – The magnetic quantum number determines the total number of orbitals and their orientation within a sub-shell. The magnetic quantum number is represented by the symbol
(c)
Interpretation:
The total number of orbitals in an atom that can have the designation
Concept introduction:
Quantum numbers are a set of four numbers that describe the movement of an electron within an atom. Out of the four, the three quantum numbers that define the shape, size, and orientation of an orbital are the principal quantum number, the orbital angular momentum quantum number, and the magnetic quantum number.
The principal quantum number – The principal quantum number indicates the distance of an electron from the nucleus. As the value of the principal quantum number increases, the distance of the electron from the nucleus increases. The farther the electron is from the nucleus, the higher is the energy of the electron. The principal quantum number is denoted by
The angular momentum quantum number – The orbital angular momentum quantum number defines the shape of the orbital. The value of orbital angular momentum quantum number depends on the value of the principal quantum number. It is denoted by
The magnetic quantum number – The magnetic quantum number determines the total number of orbitals and their orientation within a sub-shell. The magnetic quantum number is represented by the symbol
(d)
Interpretation:
The total number of orbitals in an atom that can have the designation
Concept introduction:
Quantum numbers are a set of four numbers that describe the movement of an electron within an atom. Out of the four, the three quantum numbers that define the shape, size, and orientation of an orbital are the principal quantum number, the orbital angular momentum quantum number, and the magnetic quantum number.
The principal quantum number – The principal quantum number indicates the distance of an electron from the nucleus. As the value of the principal quantum number increases, the distance of the electron from the nucleus increases. The farther the electron is from the nucleus, the higher is the energy of the electron. The principal quantum number is denoted by
The angular momentum quantum number – The orbital angular momentum quantum number defines the shape of the orbital. The value of orbital angular momentum quantum number depends on the value of the principal quantum number. It is denoted by
The magnetic quantum number – The magnetic quantum number determines the total number of orbitals and their orientation within a sub-shell. The magnetic quantum number is represented by the symbol

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Chemistry: The Molecular Nature of Matter and Change
- Design experiments in UV-Vis to figure the optimal mole ratio of copper (1:1, 2:1, 3:1 and etc)versus ethambutol using all necessary chemicals including dihydrochloride and copper nitrate hemipentahydrate and sodium hydroxide. Show how UV-Vis absorbance and maximum wavelength would change in responsearrow_forwardCorrect each molecule in the drawing area below so that it has the condensed structure it would have if it were dissolv a 0.1 M aqueous solution of HCI. If there are no changes to be made, check the No changes box under the drawing area. No changes. HO—CH,—C—CH,—OH X 5 2 2 2 HO–CH,—CH,—C—CH,—OH Explanation Check Center Accessi ©2025 on 5 Carrow_forwardMake the calculations to prepare 2M H2SO4, from concentrated H2SO4 (98%; density: 1.84 g/mL).arrow_forward
- H CH3 CH3 b) Write the products of your compound and the following reagents. If the reaction would not work for your compound, write "no reaction" and explain the problem. NaCN H* H₂NNHCH5 H* -à NaBH -à CH2MgBr Cro₁₂ --à H3O+ -à c) Would your compound give a positive Tollen's test? Why or why not?arrow_forwardHomework 4 Chem 204 Dr. Hellwig Consider this compound, which will be referred to as "your compound". a) Name your compound according to the IUPAC system. Include stereochemistry (E/Z/R/S) H CH3 CH3arrow_forwardWhat is the mechanism for this?arrow_forward
- 21.50 Determine the combinations of haloalkane(s) and alkoxide(s) that could be used to synthesize the following ethers through Williamson ether synthesis. (a) (c) (d) (e) (f) H₂COarrow_forward1. Arrange the following in order of increasing bond energy (lowest bond energy first, highest bond energy last). Provide your rationale. C=C, C-F, C=C, C-N, C-C List the bond order for each example.arrow_forwardWhat is the major enolate formed when treated with LDA? And why that one?arrow_forward
- 4. Calculate the total number of sigma bonds and total number of pi bonds in each of the following compounds. a. HH :D: +1 I H-N-C-C-O-H I H b. HH H Н :N=C-C-C=C-CEC-H :0: total o H-C-H H-C = `C-H I H. 11 H-C = C= CH H total o total π total π 1 Harrow_forwardIn the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJarrow_forwardIndicate the processes in the dismutation of Cu2O.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





