Concept explainers
(a)
Value of H on the z -axis.
Answer to Problem 7.4P
Explanation of Solution
Given:
The given configuration is
I =
Range is
Calculation:
The figure for the loop structures carrying current can be drawn as below:
The equation for H because of small current element 'Idl' will be
The
The differential expression for magnetic field intensity will be
The vector starting from current loop to the concerned point at a height 'h' will be
The equation for H because of small current element 'Idl' will be
The differential expression for magnetic field intensity will be
Because of symmetry, the magnetic field is there only in the direction of
Integrating over an azimuthal angle
The total magnetic field due to upper ring will be
The total magnetic field due to lower ring will be
As the magnetic fields are linear, therefore, the magnetic field at point P will be the sum of both.
That is,
The above expression is the value of magnetic field on the positive side of the z axis.
The total magnetic field an any point on the z axis between the range
(b)
To plot:
The graph of
Explanation of Solution
Given:
The given configuration is
I =
Calculation:
Substituting I = 1A and manipulating the equation for z/a, the modulus of total field will be
Put
Therefore, the plot will be
(c)
To plot:
The graph of
Explanation of Solution
Given:
The given configuration is
I =
Calculation:
Substituting I = 1A and manipulating the equation for z / a, the modulus of total field will be
Put
Therefore, the plot will look li
The most uniform field is obtained when
(d)
To plot:
The graph of
Answer to Problem 7.4P
The most uniform field is obtained when
Explanation of Solution
Given:
The given configuration is
I =
Calculation:
Substituting I = 1A and manipulating the equation for z/a, the modulus of total field will be
Put
Therefore, the plot will look like
Want to see more full solutions like this?
Chapter 7 Solutions
Engineering Electromagnetics
- Can you calculate the needed values. When it ask me to measure the values do I attach the function generator and use the values mentioned below? or do i leave the function generator off and measure? Any tips on how to connect the multimeters would be appreciated but not primary request.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- You are tasked with designing an electronic system for sensing the magnitude of a measurand (details and values to be provided on the day of the exam). The system must alert a user to a measurand value above a threshold, measured by an appropriate sensor, by turning on a buzzer (to make a sound). The buzzer must remain off below this threshold. All resistors used must be from the E12 series. This work is to be performed on TinkerCAD. To fully answer the question, you must provide: • Full calculations for all components you use, clearly indicated what you are calculating. • A screenshot of the TinkerCAD circuit with it in the buzzer off state (clearly showing the full circuit including the sensor). • A screenshot of the TinkerCAD circuit with it in the buzzer on state (clearly showing the full circuit including the sensor). • A written explanation of how the circuit works and justification of your design (approx. 200 words).arrow_forwardcan I have a written solutionarrow_forwardQ1 Q2 A control system is described by the block diagram in Figure 1 where R(s) is reference input and Y(s) is system output. (a) Find the transfer function Y(s)/R(s) using block diagram reduction. (b) Determine the steady state output in response to the unit step input. R(s) + + S 5 -~ $2 1 Y(s) 2s s² +2 Figure 1 A PID controller is designed to control the robot leg, and the control system is shown in Figure 2 where K is a positive gain. (a) Find the closed-loop transfer function (s)/R(s). (b) Use the Routh-Hurwitz stability criterion to determine the range of the parameter K such that the closed-loop system is stable. (s) 2 K 1+-+s s² + 3s+2 S R(s) PID Controller Robot Leg dynamics Figure 2arrow_forward
- Q3 (a) For the digital control system given in Figure 3, by adding phantom samplers to show that the z transfer function of the closed-loop system is given by C(z) R(z) G(z) 1+ G(z) H₁H₂(z) + R(s) G(s) C(s) H₂(s) H₁(s) Figure 3 (b) The analogue compensator 5s + 1 D(s) = 0.4s +1 is implemented digitally with sampling period 0.2 seconds to control the depth of a submarine system. Use the pole-zero mapping method to find a digital approximation to the analogue compensator.arrow_forwardConsider an RC circuit with a 5 ohm resistor, a 0.05 faraday capacitor, and a constant 60 V battery. If the initial charge on the capacitor is zero, i.e. q(0) = 0 determines the charge on the capacitor at any time q(t).Strictly not using chatgpt or AI need proper explaination by handarrow_forward< 8:31 Antennas Past papers Sessional-II.pdf Quaid-i-Azam University Sessional-II, Spring 2021 (Antennas (EL-724) 50% Date: 17-06-2021 NOTE: Due date for submission of Sessional-II is 17-06-2021 at 4:30 pm. Question 1 Consider a linear wire antenna of finite length and radius a. The radius a of the antenna is taken to be very small as compared to an operating wavelength A, i.e., a << A. The electric current density vector J(r) of the antenna is given by, J(r) =ė, 16()()() f(h's) = sink(1/2 h)] sin kl/2] - where h, and hy are dummy coordinates which form a three perpendicular coordinate system and 5(-) is a Dirac delta function. The geometry of the problem is given in Fig. 1. It should be noted that here axial unit vector è, in spherical coordinates are given below, =è, sine, coso, +ê, sin 0, sino, + è, cose, Find the electric and magnetic fields in the near and far zone. Also find the maximum directivity D- ← аarrow_forward
- Make a circuit in tinkerkat from the following: Truth table analysisA) Unsimplified function:From the truth table A, we can derive the unsimplified equationBoolean expression:F = (A'B'C'F') + (A'B'CF) + (A'BC'F') + (A'BCF) + (AB'C'F') + (AB'CF) + (ABC'F) + (ABCF)B) Non-simplified function:From truth table B, we can derive the unsimplified equationBoolean expression:F = (A'B'C'F') + (A'BC'F) + (A'BCF') + (AB'CF') + (ABC'F')Karnaugh MapsTO)\|00|01|11|10|--|------|------|------|------|00|1 |0|0|1|01|0|1|1|0|11|0|1|0|1|0|10|1|0|1|0|B)\|00|01|11|10|--|------|------|------|------|00|1|0|0|0|01|0|1|1|0|11|0|1|0|0|10|0|0|0|0|Simplified functions (using Karnaugh maps)TO)•Adjacent 1s are grouped together on the Karnaugh map.• The simplified function is: F = A’F + BF + CFB)• Adjacent 1s are grouped together on the Karnaugh map.• The simplified function is: F = A'C'F + BCF Schematic design (simplified functions)TO)•NO door for A•AND gate for A' and F•AND gates for B and F, and C and F•OR gate for…arrow_forwardQ2. 22 A four-pole, 415 V 50Hz induction motor supplies its rated power to a constant load. The rated speed of the motor is 1470 rpm. i) Draw the equivalent electrical circuit of the motor ii) Calculate the slip frequency and slip iii) If the supply voltage is changed to 207.5 V_25 Hz, calculate the motor speed, slip frequency, and slip. iv) Sketch torque-speed characteristics of the motor when the supply voltages are 415 V 50 Hz, 207.5 V_25 Hz and 415 V_60 Hz respectively; Compare the peak torques of the 415 V_50 Hz case and the 415 V_60 Hz case. b) A synchronous generator connects to an infinite bus. The terminal voltage VT and output current IA of the generator are shown in the phasor diagram in Figure Q2. This generator is required to double its real power output by increasing the governor's set point while maintaining the field current. With the aid of the phasor diagram, analyse the effect of the change of governor's set points on the internal generated voltage EA, the output…arrow_forwardThe figure below shows a 50Hz balanced star-star three-phase circuit with line loss. The load impedance Z = 40 + j15.08 Ω.(a)Calculate the line load impedance ZL.(b)Determine the average power:(i)Delivered by the three-phase source.(ii)Delivered to the three-phase load.(iii)Absorbed by the three-phase line.(c)Calculate the power efficiency of the system.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,