Concept explainers
A square filamentary differential current loop, dL on a side, is centered at the origin in the z = 0 plane in free space. The current I flows generally in the aD direction, (a) Assuming that r dL, and following a method similar to that in Section 4.7, show that
(b) Show that
The square loop is one form of a magnetic dipole.
(a)
To prove:
Explanation of Solution
Given info:
The centre of the square differential current loop origin in the plane z = 0. The current I is flowing in the
Calculation:
We assume that
Consider the figures below y-displaced elements. Considering the observation point is far than the lines
Figure 1
Figure 2
The net potential can be written as,
From figure (1) and figure (2) we can take,
We know that
By substituting the values in the above equation, we get,
We can write
We have considered
Thus, the relation is proved.
(b)
To prove:
Explanation of Solution
Given info:
The centre of the square differential current loop origin in the plane z = 0. The current I is flowing in the
Calculation:
We know that
Substitute
Now we have
Thus, the relation is proved.
Want to see more full solutions like this?
Chapter 7 Solutions
Engineering Electromagnetics
- Solve the following system using Gaussian elimination: x-2y+z=0 2x+y3z=5 4x7y +z = −1arrow_forwardTwo infinite conductors form a wedge located at p = 0, and o = T/6. Assume V = 0 V at o = 0, and = 100 V at p = a/6, potential at o = a/60 %3D %3D 50 25 12 10arrow_forwardμ_0 = 4π×10^(−7) T.m/Aarrow_forward
- Where surfaces z = 5 and o = 60 intersect is A circle An infinite plane An infinite line a cylinderarrow_forwardDetermine the capacitance of a conducting sphere surrounded by a thick spherical shell as shown in Figure 6.41. Please answer in typing format solution please only typing format solution yarrow_forwardQ4/ For the following configuration, both line and cylinder are infinite in extent with z-axis ρι -3μ C/m %3D ... 2 m 1.5 -C/m² Ps ... . .. .. ... .. .... ... .... .... ... . The value of electric field density at r= 3 m The value of electric field density at r= 1 m 0.0796 μC/m? 0.0398 μC/m2 0.239 μC/m 0.477 μC/m O Option 1 Option 2 O Option 1 Option 2 0.0531 µC /m² 1.5 μC/m2 O Option 3 None of the above O Option 3 O None of the abovearrow_forward
- A rectangular toroid has 5000 turns and a self- inductance of 0.50 H. If the height is 0.20 m what is the ratio of the outer radius to the inner radius?arrow_forwardCheck the image for the problemarrow_forwardAn infinitely long wire carrying a 50 A current in the positive x direction is placed along the x axis in the vacinity of a circular loop carrying 10 A current located in the x – y plane. Determine the magnteic field at the center of the loop.. Im I = 20 A d = 2 m I = 50 Aarrow_forward
- The Steady compressible flow defined by (1 – M²) %3D | dy² becomes Hyperbolic under the condition : M. = 0 M. > 1 M < 1 M = 1 %3Darrow_forwardA single infinite conducting cylinder of radius "a" is carrying an axial current "T along the z - axis (the cylinder's axis). The current is distributed uniformly across the cross section of the cylinder. Find the H Field for r > a. Ir ar 2ra? O None of the above O 2T72I a IrHo ap 2πα? -Ir ap 2πα Ir 2Ta2arrow_forwardProblem 4. A positive point charge q₁5 [nc] is on the x-axis at x₁ = -1 [m] and a second positive point charge q₂ = 4 [nc] is on the x-axis at x₂ = 3 [m]. dl = b. a. and Point A. C. 91 Point A is on the x-axis at XA = 8 [m]. 0 = EzA=[ O+x O-x O+y O-y d. and Point A. d2 = 2 m 92 Find the distance between 91 6 created by the charge q₁ at Point A. E₁A= Ĵ [N/C] Find the distance between 92 Find the magnitude of È ₁A. [N/C] m x, m Calculate ₁4 the electric field 1A created by the charge 92 at Point A. E₂A î+ [N/C] g. Consider a point located 6 m from the origin, what will be the direction of the net electric field created by the charges at this point? Find the magnitude of È 2A. [N/C] Calculate E24 the electric field 2Aarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,