Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.43P
Compute the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Homework:
The open-loop transfer function of DC Motor is shown in equations (1),
where the rotational speed is considered as the output and the armature
voltage as the input, (J) is the moment of inertia of the rotor, (b) is the
viscous friction constant of the motor, (La) is the electrical inductance, (Ra)
is the electrical resistance and (V) is the voltage source, with a setpoint of
2000 rpm
e(s)
K₁
G(s)=(s) = (j.s+b)(La.s+ Ra) + K₁ × Kɩ
rad/sec,
sec
(1)
Parameters
Torque constant (Kt)
Value
Electromotive force constant (Kb)
Electrical resistance (Ra)
Viscous friction constant of the motor (b) 0.008 N.m/rad/s
Electrical inductance (La)
Moment of inertia of the rotor (J)
0.5 N.m/A
1.25 V/rad/s
502
0.2 H
0.1 kg.m²
Table 1: Parameters of the DC motor
Design Speed Control of DC Motor Using PID Controller, and then obtain
Overshoot, Rise time, Steady state error, and Settling time
A. Explain the mode of operation for complementry commutation circuit. Find the circuit turn
off time if the load resistances R1-R2-5 2 capacitance C-7.5 μF, V-100 volts.
ng
tu
I
**3- In the following transistor amplifier circuit, assuming that:**
**3-1- Calculate the operating point of the transistor (values of its continuous currents and voltages).**
**3-2- Draw the equivalent circuit of the amplifier for small signals.**
**3-3- Calculate the input resistance \( R_{in} \).**
Chapter 7 Solutions
Engineering Electromagnetics
Ch. 7 - Find H in rectangular components at P(2,3,4) if...Ch. 7 - Prob. 7.2PCh. 7 - Prob. 7.3PCh. 7 - Prob. 7.4PCh. 7 - The parallel filamentary conductors shown in...Ch. 7 - A disk of radius a lies in the xy plane, with z...Ch. 7 - Prob. 7.7PCh. 7 - For the finite-length current element on the z...Ch. 7 - Prob. 7.9PCh. 7 - Prob. 7.10P
Ch. 7 - A solenoid of radius a and of length. L is...Ch. 7 - Prob. 7.12PCh. 7 - Prob. 7.13PCh. 7 - Prob. 7.14PCh. 7 - Prob. 7.15PCh. 7 - A current filament carrying I in the -az direction...Ch. 7 - Prob. 7.17PCh. 7 - Prob. 7.18PCh. 7 - Prob. 7.19PCh. 7 - A solid conductor of circular cross section with a...Ch. 7 - Prob. 7.21PCh. 7 - Prob. 7.22PCh. 7 - Prob. 7.23PCh. 7 - Prob. 7.24PCh. 7 - Prob. 7.25PCh. 7 - Prob. 7.26PCh. 7 - The magnetic field intensity is given in a certain...Ch. 7 - Given H=(3r2/sin)a+54rcosa A/m in free space: (a)...Ch. 7 - Prob. 7.29PCh. 7 - Prob. 7.30PCh. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - Use an expansion in rectangular coordinates to...Ch. 7 - A filamentary conductor on the z axis carries a...Ch. 7 - A current sheet K = 20 az A/m, is located at p =...Ch. 7 - Let A= (3y-z)ax+2xzayWb/m in a certain regin of...Ch. 7 - Let/N=1000, I=.08 A, p0=2 cm and a=.08 cm for the...Ch. 7 - A square filamentary differential current loop, dL...Ch. 7 - Prob. 7.39PCh. 7 - Show that the line integral of the vector...Ch. 7 - Prob. 7.41PCh. 7 - Show that 2(1/R12)=1(1/R12)=R21/R312.Ch. 7 - Compute the vector magnetic potential within the...Ch. 7 - Prob. 7.44P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- . Given the following complex circuits. Solve for the Voltage drop at the Capacitive load in the circuit using the subsequent analyses NORTON, and THEVENIN'S THEOREM.arrow_forward11:04 PM P T "168 76 EEE 316-Electr...chines | PQ..pdf K/S Phoenix Files 4th September, 2023. INSTRUCTIONS: Answer FIVE (5) QUESTIONS, DURATION: 3 HOURS QUESTION ONE: 1a) What is electromechanical energy conversion. (3 Mark: 1b) Explain the following terms: permanent magnets and non-permanent magnets (5 Mark: 1c) A short shunt generator delivers 45A at 240V and the resistance of the shunt field and armature: 500 and 0.030 respectively. Calculated the generated emf. (6 Marks QUESTION TWO: 2a) 2b) Energy can never be created or destroyed", discuss with examples Why is the air-gap very important in electromechanical systems. (4 Marks (4 Marks, 2c) A short shunt generator delivers 450A at 240V and the resistance of the shunt field and armature are 500 and 0.030 respectively. Calculated the generated emf. (6Marks) QUESTION THREE: 3a) 3b) List and explain the two types of armature windings mostly used in DC machines. Differentiate between electromechanical devices and machines with examples.…arrow_forward2. For the circuit shown, V = -10 V, R. = 10 kQ, R Calculate the operating point for the circuit shown. Use /, = 2.2 kQ, R = 3.6 kQ, R = 1 kQ. //ẞ and calculate /. for ẞ = 90. R1 m R2 22 Rc C Vec RE HEarrow_forward
- Pls show neat and whole solutionarrow_forwardPls show neat and whole solutionarrow_forwardA. A dc chopper with a free-wheeling diode feeds a dc motor with an armature inductance of 15 mH and resistance of 12. The dc source voltage is 200 V. The ON time and OFF time are 2 ms and 0.5 ms respectively. Determine the armature current when the back Emf of the motor is 155 V. Also draw the power circuitry.arrow_forward
- An inductive load is controlled by an impulse commutation chopper in Fig.1 and peak load current IL-450A at a supply voltage of 220V. The chopping frequency f=275 Hz, commutation capacitor C=60μF and reversing inductance Lm=20μH.The source inductance Ls 8μH, determine: td tc tr=tc+td a) peak Capacitor discharge Current. b) Circuit turn off time. c) Commutation time. d) The maximum instantaneous capacitor voltage. Vects = Vs+ IL LS sin ust Ls 000002 a C T₁ IL T₂ FWD ic oooooL L D₁ fig1 LOAD Vo Iarrow_forwardAn inductive load is controlled by an impulse commutation chopper in Fig.1 and peak load current IL-450A at a supply voltage of 220V. The chopping frequency f=275 Hz, commutation capacitor C=60μF and reversing inductance Lm=20μH.The source inductance Ls=8μH, determine : td tc tr=tc+td a) peak Capacitor discharge Current. b) Circuit turn off time. c) Commutation time. d) The maximum instantaneous capacitor voltage. Vects = Vs+ ILLS Ls 000002 a C ic T₁ iTI IL T₂ FWD LOAD Vo oooooL L D₁ fig1 Iarrow_forwardA. A dc chopper with a free-wheeling diode feeds a dc motor with an armature inductance of 15 mH and resistance of 10. The dc source voltage is 200 V. The ON time and OFF time are 2 ms and 0.5 ms respectively. Determine the armature current when the back Emf of the motor is 155 V. Also draw the power circuitry. 100arrow_forward
- 1. For the circuit shown, VBB = +10 V, Vcc = +30 V, RB = 470 kQ, Rc = 6 kQ. Calculate the operating point for the circuit shown for a ẞ value of 90 and for a ẞ value of 130. VBB RB w Rc Vccarrow_forwardDon't use ai to answer I will report you answerarrow_forward.Draw the diagram and explain the working of RTD sensor for temperature measurementarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License