System Dynamics
3rd Edition
ISBN: 9780073398068
Author: III William J. Palm
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.49P
A certain wall section is composed of a 12 in. by 12 in. brick area 4 in. thick. Surrounding the brick is a 36 in. by 36 in. concrete section, which is also 4 in. thick. The thermal conductivity of the brick is k = 0.086 lb/sec-°F.
For the concrete, k — 0.02 lb/sec-°F. (a) Determine the thermal resistance of the wall section, (b) Compute the heat flowr rate through (1) the concrete,
(2) the brick, and (3) the wall section if the temperature difference across the wall is 40°F.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A metal rod 1 sq. in. in cross section and 6 in. long is heated at one end and cooled at the other. If the rate of heat input is 3 BTu/hr and the difference in temperature of the two ends is 2 deg. F, what is the coefficient of thermal conductivity in BTU/(hr)(ft²)(⁰F/ft)?
1
Number 16.
Chapter 7 Solutions
System Dynamics
Ch. 7 - Prob. 7.1PCh. 7 - Refer to the water storage and supply system shown...Ch. 7 - Prob. 7.3PCh. 7 - In Figure P7.4 the piston of area A is connected...Ch. 7 - Refer to Figure 7.1.4a. and suppose that p\ — p2=...Ch. 7 - Pure water flows into a mixing tank of volume V =...Ch. 7 - Consider the mixing tank treated in Problem 7.6....Ch. 7 - Derive the expression for the fluid capacitance of...Ch. 7 - Prob. 7.9PCh. 7 - Prob. 7.10P
Ch. 7 - 7.11 Derive the expression for the capacitance of...Ch. 7 - Air flows in a certain cylindrical pipe 1 m long...Ch. 7 - Derive the expression for the linearized...Ch. 7 - Consider the cylindrical container treated in...Ch. 7 - A certain tank has a bottom area A = 20 m2. The...Ch. 7 - A certain tank has a circular bottom area A = 20...Ch. 7 - The water inflow rate to a certain tank was kept...Ch. 7 - Prob. 7.18PCh. 7 - Prob. 7.19PCh. 7 - In the liquid level system shown in Figure P7.20,...Ch. 7 - The water height in a certain tank was measured at...Ch. 7 - Derive the model for the system shown in Figure...Ch. 7 - (a) Develop a model of the two liquid heights in...Ch. 7 - Prob. 7.24PCh. 7 - Design a piston-type damper using an oil with a...Ch. 7 - Prob. 7.26PCh. 7 - 7.27 An electric motor is sometimes used to move...Ch. 7 - Prob. 7.28PCh. 7 - Prob. 7.29PCh. 7 - Figure P7.3O shows an example of a hydraulic...Ch. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - Prob. 7.33PCh. 7 - Prob. 7.34PCh. 7 - Prob. 7.35PCh. 7 - Prob. 7.36PCh. 7 - Prob. 7.37PCh. 7 - (a) Determine the capacitance of a spherical tank...Ch. 7 - Obtain the dynamic model of the liquid height It...Ch. 7 - Prob. 7.40PCh. 7 - Prob. 7.41PCh. 7 - Prob. 7.42PCh. 7 - Prob. 7.43PCh. 7 - Prob. 7.44PCh. 7 - Prob. 7.45PCh. 7 - The copper shaft shown in Figure P7.46 consists of...Ch. 7 - A certain radiator wall is made of copper with a...Ch. 7 - A particular house wall consists of three layers...Ch. 7 - A certain wall section is composed of a 12 in. by...Ch. 7 - Prob. 7.50PCh. 7 - Prob. 7.51PCh. 7 - A steel tank filled with water has a volume of...Ch. 7 - Prob. 7.53PCh. 7 - Prob. 7.54PCh. 7 - Prob. 7.55P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the thermal resistance r (in hr - °F/BTU) and the equivalent R-value (in hr ft?. °F/BTU) of a typical frame 20' x 7.5" wall consisting of a 0.5" plaster board on the inside of the room, nominai 2 x 4 studs, and a 0.5" sheathing on the outside. The spaces between the studs are filled with an R-15 insulating foam. What is the heat loss (in BTU) through this wall in four hours if the inside temperature is 72°F and the outside temperature is 32°F? (Assume that the 15% of the wall's area are studs and the remaining 85% is filled with the insulating foam. Assume that the air is moving outside the wall.) r= 0.0805 x hr: OF/BTU R=0.09 x hr ft2. F/BTU AQ = BTUarrow_forward1arrow_forward1. The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, k₁ = 20 W/m • K and kc = 50 W/m • K, and known thickness, L₁ = 0.30 m and Lc = 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, Lâ = 0.15 m, but the unknown thermal conductivity kú. -Tsp Ts.i KA kB kg kc Air T, h Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o = 20°C, an inner surface temperature of T¸¡ = 600°C, and an oven air temperature of T∞ = 800°C. The inside convection coefficient h is known to be 25 W/m² • K. What is the value of k¸? Answer: KB=1.53W/m*Karrow_forward
- Heat transferarrow_forwardA 1000 m³ cubic building (meaning it is a cube with sides of length 10.0 m) has concrete walls 20 cm thick. Concrete has a thermal conductivity of 1.25 W/(mK). An indoor temperature of 21 C is maintained. If it is -15 C outside determine the rate of heat loss from the building. Answer: Check ✓ Choose... W Jarrow_forwardA wall of a house is made from two layers of bricks enclosing a layer of insulation. A radiator is positioned to cover the whole internal surface, and used intermittently when the internal temperature is low. The external surface is exposed to the outside air. Which of the following assumptions could be used to identify the relevant reduced form of the conduction equation to find the temperature in the wall. a. Conduction is mainly in two directions. b. Conduction is mainly in one direction. c. The wall properties are homogeneous. d. Steady conditions exist. e. Unsteady conditions exist. f. There is an internal volumetric heat generation in the wall.arrow_forward
- Look at the picture and thank youarrow_forward3. A cylindrical pipe of negligible thickness holding a hot fluid at 140°C and having an outer diameter of 0.4 m is insulated with three layers of each 50 mm thick insulation of k₁ = 0.02: k2 = 0.06 and k3 = 0.16 W/m-K (starting from inside). The outside surface temperature is 30°C. Solve for the value of T2 (°C). • show conversions, units, and box in your final answersarrow_forwardWhat is the thermal resistance of a spherical shell with 12 in OD and an internal radius of 5 in.? Use k = 25 Btu per hr per ft per degrees Fahrenheit. 4.58 °F-sec/Btu 0.00127 °F-sec/Btu 9.17 °F-sec/Btu O 2.29 °F-sec/Btuarrow_forward
- A) Answer the question shown in the imagearrow_forwardOn a multi-layered square wall, the thermal resistance of the first layer is 0.005 ° C / W, the resistance of the second layer is 0.3 ° C / W, and the third layer is 0.1 ° C / W. The overall temperature gradient in the wall is multilayered from one side. to the other side is 50 ° C. a. Determine the heat flux through the walls. = Answer watts / m2. b. If the thermal resistance of the second layer is changed to 0.1 ° C / W, what is the effect in% on heat flux, assuming the temperature gradient remains the same? = AnswerAnswer %.arrow_forward3.6 Heat losses through windows in buildings are substantial. What would be the percentage reduction in heat loss that would be mitigated by replacing a window containing a single pane of glass with (a) double-pane low-E insulating glass or (b) a 3-inch-thick sheet of expanded polystyrene sheet? The quoted R values for these items are: • single pane of glass: 0.90 ft 2 hr ° F/Btu, • double pane of low-E insulating glass: 2.3 ft 2 hr ° F/Btu, • 1-inch-thick sheet of polystyrene sheet: 4.0 ft 2 hr ° F/Btu.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license