
(a)
Interpretation:
For each step of the given unimolecular nucleophilic substitution
Concept introduction:
An atom with partial or full negative charge is called an electron-rich site whereas an atom with partial or full positive charge is called an electron-poor site. An electron-rich atom has a lone pair of electrons whereas an electron-poor atom lacks an octet. In an elementary step, electrons tend to flow from an electron-rich site to an electron-poor site.
(b)
Interpretation:
Appropriate curved arrows are to be drawn to show the bond formation and bond breaking that occur in each step of the given unimolecular nucleophilic substitution
Concept introduction:
In an elementary step, electrons tend to flow from an electron-rich site to an electron-poor site. One curved arrow is drawn from the lone pair of an electron-rich atom to the H attached to the electron-poor site to show the formation of a bond. A second curved arrow is drawn starting from the middle of the broken bond to the atom on which the lone pair ends up, to indicate the breaking of the bond.
(c)
Interpretation:
Each step of the given unimolecular nucleophilic substitution
Concept introduction:
An elementary step in which a proton is transferred from an electron-poor site to an electron-rich site and one bond is broken and another is formed simultaneously is called the proton transfer step. An elementary step in which only single bond is broken and both electrons from that bond end up on one of the atoms initially involved in the bond is called the heterolysis step. An elementary step in which a single covalent bond is formed between the electron-rich site and the electron-poor site is called the coordination step.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Organic Chemistry: Principles And Mechanisms (second Edition)
- Please answer the questions in the photos and please revise any wrong answers. Thank youarrow_forward(Please be sure that 7 carbons are available in the structure )Based on the 1H NMR, 13C NMR, DEPT 135 NMR and DEPT 90 NMR, provide a reasoning step and arrive at the final structure of an unknown organic compound containing 7 carbons. Dept 135 shows peak to be positive at 128.62 and 13.63 Dept 135 shows peak to be negative at 130.28, 64.32, 30.62 and 19.10.arrow_forward-lease help me answer the questions in the photo.arrow_forward
- For the reaction below, the concentrations at equilibrium are [SO₂] = 0.50 M, [0] = 0.45 M, and [SO3] = 1.7 M. What is the value of the equilibrium constant, K? 2SO2(g) + O2(g) 2SO3(g) Report your answer using two significant figures. Provide your answer below:arrow_forwardI need help with this question. Step by step solution, please!arrow_forwardZn(OH)2(s) Zn(OH)+ Ksp = 3 X 10-16 B₁ = 1 x 104 Zn(OH)2(aq) B₂ = 2 x 1010 Zn(OH)3 ẞ3-8 x 1013 Zn(OH) B4-3 x 1015arrow_forward
- Help me understand this by showing step by step solution.arrow_forwardscratch paper, and the integrated rate table provided in class. our scratch work for this test. Content attribution 3/40 FEEDBACK QUESTION 3 - 4 POINTS Complete the equation that relates the rate of consumption of H+ and the rate of formation of Br2 for the given reaction. 5Br (aq) + BrO3 (aq) + 6H (aq) →3Br2(aq) + 3H2O(l) • Your answers should be whole numbers or fractions without any decimal places. Provide your answer below: Search 尚 5 fn 40 * 00 99+ 2 9 144 a [arrow_forward(a) Write down the structure of EDTA molecule and show the complex structure with Pb2+ . (b) When do you need to perform back titration? (c) Ni2+ can be analyzed by a back titration using standard Zn2+ at pH 5.5 with xylenol orange indicator. A solution containing 25.00 mL of Ni2+ in dilute HCl is treated with 25.00 mL of 0.05283 M Na2EDTA. The solution is neutralized with NaOH, and the pH is adjusted to 5.5 with acetate buffer. The solution turns yellow when a few drops of indicator are added. Titration with 0.02299 M Zn2+ requires 17.61 mL to reach the red end point. What is the molarity of Ni2+ in the unknown?arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
