Concept explainers
(a)
Interpretation:
The diagram that represents the final level of the liquids A and B has to be given.
Concept Introduction:
Osmotic pressure: The pressure, which prevents the flow of extra solvent into a solution on one side of a semipermeable membrane is called as osmotic pressure. Osmotic pressure depends on the number of particles in a solution. The greater the number of dissolved particles, the greater the osmotic pressure.
(b)
Interpretation:
The diagram that represents the final level of the liquids A and B has to be given.
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
The diagram that represents the final level of the liquids A and B has to be given.
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The diagram that represents the final level of the liquids A and B has to be given.
Concept Introduction:
Refer to part (a).
(e)
Interpretation:
The diagram that represents the final level of the liquids A and B has to be given.
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Principles of General, Organic, Biological Chemistry
- Assume that you have identical volumes of two liquids; the first is 0.3 M glucose solution and the second is 0.1 M glucose solution. Based on the diagrams in Problem 8-85, where red is the 0.3 M glucose and blue is the 0.1 M glucose, which one of the diagrams best represents the two liquids after they have stood uncovered for a few days and some evaporation of liquid has occurred?arrow_forwardGive an example of each of the following types of solutions: (a) a gas in a liquid (b) a gas in a gas (c) a solid in a solidarrow_forwardWhen two beakers containing different concentrations of a solute in water are placed in a closed cabinet for a time, one beaker gains solvent and the other loses it, so that the concentrations of solute in the two beakers become equal. Explain what is happening.arrow_forward
- You have read that adding a solute to a solvent can both increase the boiling point and decrease the freezing point. A friend of yours explains it to you like this: The solute and solvent can be like salt in water. The salt gets in the way of freezing in that it blocks the water molecules from joining together. The salt acts like a strong bond holding the water molecules together so that it is harder to boil. What do you say to your friend?arrow_forwardRubbing alcohol contains 585 g isopropanol (C3H7OH) per liter (aqueous solution). Calculate the molarity.arrow_forwardSolutions Introduced directly into the bloodstream have to be isotonic with blood; that is, they must have the same osmotic pressure as blood. An aqueous NaCl solution has to be 0.90% by mass to be isotonic with blood. What is the molarity of the sodium ions in solution? Take the density of the solution to be 1.00 g/mL.arrow_forward
- What is the usual solubility behavior of an ionic compound in water when the temperature is raised? Give an example of an exception to this behavior.arrow_forwardConsider three test tubes. Tube A has pure water. Tube B has an aqueous 1.0 m solution of ethanol, C2H5OH. Tube C has an aqueous 1.0 m solution of NaCl. Which of the following statements are true? (Assume that for these solutions 1.0m=1.0M.) (a) The vapor pressure of the solvent over tube A is greater than the solvent pressure over tube B. (b) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube A. (c) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube C. (d) The boiling point of the solution in tube B is higher than the boiling point of the solution in tube C. (e) The osmotic pressure of the solution in tube B is greater than the osmotic pressure of the solution in tube C.arrow_forwardEvery pure substance has a definite and fixed set of physical and chemical properties. A solution is prepared by dissolving one pure substance in another. Is it reasonable to expect that the solution will also have a definite and fixed set of properties that are different from the properties of either component? Explain your answer.arrow_forward
- The following diagrams show varying amounts of the same solute (the red spheres) in varying amounts of solution. a. In which of the diagrams is the solution concentration the largest? b. In which two of the diagrams are the solution concentrations the same?arrow_forwardHow do solutions differ from compounds? From other mixtures?arrow_forwardA pharmacist prepares an isotonic saline solution for intravenous infusion. Instead of preparing a 0.15 M solution, a 1.5 M solution is prepared. What would happen to the red blood cells if this erroneously prepared solution is infused?arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning