Principles of General, Organic, Biological Chemistry
2nd Edition
ISBN: 9780073511191
Author: Janice Gorzynski Smith Dr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.8, Problem 7.29P
Describe the process that occurs when a 1.0 M NaCl solution is separated from a 1.5 M NaCl solution by a semipermeable membrane in terms of each of the following: (a) the identity of the substances that flow across the membrane; (b) the direction of flow before and after equilibrium is achieved; (c) the height of the solutions after equilibrium is achieved.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe the process that occurs when a 1.0 M NaCl solution is separated from a 1.5 M NaCl solution by a semipermeable membrane in terms of each of the following: (a) the identity of the substances that fl ow across the membrane; (b) the direction of fl ow before and after equilibrium is achieved; (c) the height of the solutions after equilibrium is achieved.
A glucose (C6H12O6) solution and a salt (NaCl) solution, both of the same molar concentration, are separated by a semi-permeable membrane. Which of the following will occur as the two solutions approach equilibrium?
(A) There will be a net flow of water molecules from the glucose into the salt solution.
(B) There will be a net flow of water molecules from the salt into the glucose solution.
(C) There will be a net flow of the Na+ and Cl– ions into the glucose solution.
(D) There will be no net flow of water molecules solute particles across the membrane because both solutions have the same concentration.
A glucose (C6H12O6) solution and a salt (NaCl) solution, both of the same molar concentration, are separated by a semi-permeable membrane. Which of the following will occur as the two solutions approach equilibrium?
(A) There will be a net flow of water molecules from the glucose into the salt solution.
(B) There will be a net flow of water molecules from the salt into the glucose solution.
(C) There will be a net flow of the Na+ and Cl– ions into the glucose solution.
(D) Water and the solute particles will flow freely across the membrane.
Chapter 7 Solutions
Principles of General, Organic, Biological Chemistry
Ch. 7.1 - Classify each substance as a heterogeneous...Ch. 7.1 - Classify each product as a solution, colloid, or...Ch. 7.2 - Consider the following diagrams for an aqueous...Ch. 7.2 - Prob. 7.4PCh. 7.2 - Prob. 7.5PCh. 7.2 - Prob. 7.6PCh. 7.2 - Prob. 7.7PCh. 7.2 - If a solution contains 125 mEq of Na+ per liter,...Ch. 7.3 - Prob. 7.9PCh. 7.3 - Prob. 7.10P
Ch. 7.4 - Why does a soft drink become flat faster when it...Ch. 7.4 - Predict the effect each change has on the...Ch. 7.5 - Prob. 7.13PCh. 7.5 - Prob. 7.14PCh. 7.5 - Prob. 7.15PCh. 7.5 - A drink sold in a health food store contains 0.50%...Ch. 7.5 - Prob. 7.17PCh. 7.5 - Prob. 7.18PCh. 7.5 - Prob. 7.19PCh. 7.6 - Prob. 7.20PCh. 7.6 - Prob. 7.21PCh. 7.6 - Prob. 7.22PCh. 7.6 - Prob. 7.23PCh. 7.6 - Prob. 7.24PCh. 7.7 - Prob. 7.25PCh. 7.7 - Prob. 7.26PCh. 7.7 - Prob. 7.27PCh. 7.8 - Which solution in each pair exerts the greater...Ch. 7.8 - Describe the process that occurs when a 1.0 M NaCl...Ch. 7.8 - Prob. 7.30PCh. 7 - Prob. 7.31UKCCh. 7 - Prob. 7.32UKCCh. 7 - Prob. 7.33UKCCh. 7 - Prob. 7.34UKCCh. 7 - Prob. 7.35UKCCh. 7 - Prob. 7.36UKCCh. 7 - Prob. 7.37UKCCh. 7 - Prob. 7.38UKCCh. 7 - Prob. 7.41UKCCh. 7 - Prob. 7.42UKCCh. 7 - Prob. 7.43APCh. 7 - Prob. 7.44APCh. 7 - Prob. 7.45APCh. 7 - Prob. 7.46APCh. 7 - Prob. 7.47APCh. 7 - Prob. 7.48APCh. 7 - Prob. 7.49APCh. 7 - Prob. 7.50APCh. 7 - Prob. 7.51APCh. 7 - Prob. 7.52APCh. 7 - Prob. 7.53APCh. 7 - Prob. 7.54APCh. 7 - Prob. 7.55APCh. 7 - Prob. 7.56APCh. 7 - Prob. 7.57APCh. 7 - Prob. 7.58APCh. 7 - Prob. 7.59APCh. 7 - Prob. 7.60APCh. 7 - Prob. 7.61APCh. 7 - Prob. 7.62APCh. 7 - Prob. 7.63APCh. 7 - Prob. 7.64APCh. 7 - Prob. 7.65APCh. 7 - Prob. 7.66APCh. 7 - Prob. 7.67APCh. 7 - Prob. 7.68APCh. 7 - Prob. 7.69APCh. 7 - Prob. 7.70APCh. 7 - Prob. 7.71APCh. 7 - Prob. 7.72APCh. 7 - Prob. 7.73APCh. 7 - Prob. 7.74APCh. 7 - Prob. 7.75APCh. 7 - Prob. 7.76APCh. 7 - Prob. 7.77APCh. 7 - Prob. 7.78APCh. 7 - Prob. 7.79APCh. 7 - Prob. 7.80APCh. 7 - Prob. 7.81APCh. 7 - Prob. 7.82APCh. 7 - Prob. 7.83APCh. 7 - Prob. 7.84APCh. 7 - Prob. 7.85APCh. 7 - Prob. 7.86APCh. 7 - Prob. 7.87APCh. 7 - Prob. 7.88APCh. 7 - Prob. 7.89APCh. 7 - Prob. 7.90APCh. 7 - If the concentration of glucose in the blood is 90...Ch. 7 - Prob. 7.92APCh. 7 - Prob. 7.93APCh. 7 - Prob. 7.94APCh. 7 - Prob. 7.95APCh. 7 - Prob. 7.96APCh. 7 - Prob. 7.97APCh. 7 - Prob. 7.98APCh. 7 - Prob. 7.99APCh. 7 - Prob. 7.100APCh. 7 - Prob. 7.101APCh. 7 - Prob. 7.102APCh. 7 - Prob. 7.103CPCh. 7 - Prob. 7.104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The freezing point of 0.20 m HF is -0.38C. Is HF primarily nonionized in this solution (HF molecules), or is it dissociated to H+ and F- ions?arrow_forwardA 0.109 mol/kg aqueous solution of formic acid, HCOOH, freezes at −0.210 °C. Calculate the percent dissociation of formic acid.arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forward
- The freezing point of a 0.11 m solution of HNO2 is -0.20C. (a) What is i for the solution? (b) Is the solution made (i) of HNO2 molecules only? (ii) of H+ and NO2- only? (iii) of more HNO2 molecules than H+ ions? (iv) primarily of H+ and NO2- ions with some HNO2 molecules?arrow_forwardThe freezing point of a 0.21 m aqueous solution of H2SO4 is -0.796C. (a) What is i? (b) Is the solution made up primarily of (i) H2SO4 molecules only? (ii) H+ and HSO4- ions? (iii) 2H+ and 1SO42- ions?arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Oxygen gas in water with P = 1 atm and T = 10C Oxygen gas in water with P = 1 atm and T = 20C b. Nitrogen gas in water with P = 2 atm and T = 50C Nitrogen gas in water with P = 1 atm and T = 70C c. Table salt in water with P = 1 atm and T = 40C Table salt in water with P = 1 atm and T = 70C d. Table sugar in water with P = 3 atm and T = 30C Table sugar in water with P = 1 atm and T = 80Carrow_forward
- Butane, C4H10, has been suggested as the refrigerant in household compressors such as those found in air conditioners. (a) To what extent is butane soluble in water? Calculate the butane concentration in water if the pressure of the gas is 0.21 atm. (kH = 0.0011 mol/kgbar at 25 C) (b) If the pressure of butane is increased to 1.0 atm, does the butane concentration increase or decrease?arrow_forwardThe freezing point of 0.109 m aqueous formic acid is 0.210C. Formic acid, HCHO2, is partially dissociated according to the equation HCHO2(aq)H+(aq)+CHO2(aq) Calculate the percentage of HCHO2 molecules that are dissociated, assuming the equation for the freezing-point depression holds for the total concentration of molecules and ions in the solution.arrow_forwardThe antifreeze in most automobile radiators is a mixture of equal volumes of ethylene glycol and water, with minor amounts of other additives that prevent corrosion. What are the (a) mole fraction and (b) molality ofethylene glycol, C2H4(OH)2, in a solution prepared from 2.22 × 103 g of ethylene glycol and 2.00 × 103 g of water (approximately 2 L of glycol and 2 L of water)?arrow_forward
- The molar mass of phenolphthalein, an acid-base indicator, was determined by osmotic pressure measurements. A student obtained an osmotif pressure of 14.6mm Hg at 25C for a 2.00-L solution containing 500.0 mg of phenolphthalein. What is the molar mass of phenolphthalein?arrow_forwardTo obtain a precipitate which is useful for gravimetric analysis, the analyst tries to obtain conditions to encourage crystal growth, as opposed to the formation of a colloid. Which of the following statements aids in the formation of a crystalline precipitate and the formation of a colloidal precipitate? Drag your answers to the appropriate markers. (a) The solutions are made as dilute as practical to allow crystals to form slowly. (b) The addition of strong electrolytes (e.g. NaCl or HCl) in the analyte solution, prior to the precipitation reaction. (c) After the digestion of the precipitate, the hot solution is cooled down to room temperature gradually and kept undisturbed overnight. (d) The analyst selects the precipitate of the analyte with the Ksp less than 1 x 10 -15 (e) The Relative Supersaturation value of the analyte solution should be greater than 1 million upon the addition of the precipitating reagent. formation of colloidal precipitate favored formation of crystalline…arrow_forwardYou make a solution of a nonvolatile solute with a liquid solvent. Indicate if each of the following statements is true or false. (a) The freezing point of the solution is unchanged by the addition of the solvent. (b) The solid that forms as the solution freezes are nearly pure solute. (c) The freezing point of the solution is independent of the concentration of the solute. (d) The boiling point of the solution increases in proportion to the concentration of the solute. (e) At any temperature, the vapor pressure of the solvent over the solution is lower than what it would be for the pure solventarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY