Concept explainers
(a)
Interpretation:
Curved arrow and the product formed for the given nucleophilic addition step are to be drawn.
Concept introduction:
The curved arrow drawn from the nucleophile (electron rich species) to the polar pi-bond (electron poor species) represents the flow of electrons from an electron rich site to an electron poor site. The second curved arrow is drawn from the center of double or triple bond to the electronegative atom. A new bond is formed between the nucleophile and the electron deficient atom.

Answer to Problem 7.26P
The curved arrow and the product formed in the given nucleophilic addition step is drawn as:
Explanation of Solution
In the given nucleophilic addition step is:
In this step,
Thus, the curved arrows for the given nucleophilic addition step are drawn as:
The new bond in the product is formed between the electron rich O atom from the nucleophile and the electron poor C atom of the carbonyl group.
The curved arrow represents the flow of electrons from an electron rich site to an electron poor site.
(b)
Interpretation:
Curved arrow and the product formed for the given nucleophilic addition step are to be drawn.
Concept introduction:
The curved arrow drawn from the nucleophile (electron rich species) to the polar pi-bond (electron poor species) represents the flow of electrons from an electron rich site to an electron poor site. The second curved arrow is drawn from the center of double or triple bond to the electronegative atom. A new bond is formed between the nucleophile and the electron deficient atom.

Answer to Problem 7.26P
The curved arrow and the product formed in the given nucleophilic addition step is drawn as:
Explanation of Solution
In the given nucleophilic addition step is:
In this step
Thus, the curved arrows for the given nucleophilic addition step are drawn as:
The new bond in the product is formed between electron rich C atom from the nucleophile and electron poor C atom of the carbonyl group.
The curved arrow represents the flow of electrons from electron rich site to electron poor site.
(c)
Interpretation:
Curved arrow and the product formed for the given nucleophilic addition step are to be drawn.
Concept introduction:
The curved arrow drawn from the nucleophile (electron rich species) to the polar pi-bond (electron poor species) represents the flow of electron from an electron rich site to an electron poor site. The second curved arrow is drawn from the center of double or triple bond to the electronegative atom. A new bond is formed between the nucleophile and the electron deficient atom.

Answer to Problem 7.26P
The curved arrow and the product formed in the given nucleophilic addition step is drawn as:
Explanation of Solution
In the given nucleophilic addition step is:
In this step
Thus, the curved arrows for the given nucleophilic addition step are drawn as:
The new bond in the product is formed between electron rich C atom from the nucleophile and electron poor C atom.
Curved arrow represents the flow of electrons from electron rich site to electron poor site.
(d)
Interpretation:
Curved arrow and the product formed for given nucleophilic addition step are to be drawn.
Concept introduction:
The curved arrow drawn from the nucleophile (electron rich species) to the polar pi-bond (electron poor species) represents the flow of electron from an electron rich site to an electron poor site. The second curved arrow is drawn from the centre of double or triple bond to the electronegative atom. A new bond is formed between the nucleophile and the electron deficient atom.

Answer to Problem 7.26P
The curved arrow and the product formed in the given nucleophilic addition step is drawn as:
Explanation of Solution
In the given nucleophilic addition step is:
In this step
Thus, the curved arrows for the given nucleophilic addition step are drawn as:
The new bond in the product is formed between the electron rich H atom from the nucleophile and the electron poor C atom of the carbonyl group.
Curved arrow represents flow of electrons from electron rich site to electron poor site.
(e)
Interpretation:
Curved arrow and the product formed for given nucleophilic addition step are to be drawn.
Concept introduction:
The curved arrow drawn from the nucleophile (electron rich species) to the polar pi-bond (electron poor species) represents the flow of electron from an electron rich site to an electron poor site. The second curved arrow is drawn from the center of double or triple bond to the electronegative atom. A new bond is formed between the nucleophile and the electron deficient atom.

Answer to Problem 7.26P
The curved arrow and the product formed in the given nucleophilic addition step is drawn as:
Explanation of Solution
In the given nucleophilic addition step is:
In this step
Thus, the curved arrows for the given nucleophilic addition step are drawn as:
The new bond in the product is formed between electron rich O atom from the nucleophile and electron poor C atom of the carbonyl group.
Curved arrow represents the flow of electrons from electron rich site to electron poor site.
(f)
Interpretation:
Curved arrow and the product formed for the given nucleophilic addition step are to be drawn.
Concept introduction:
The curved arrow drawn from the nucleophile (electron rich species) to the polar pi-bond (electron poor species) represents the flow of electron from an electron rich site to an electron poor site. The second curved arrow is drawn from the center of double or triple bond to the electronegative atom. A new bond is formed between the nucleophile and the electron deficient atom.

Answer to Problem 7.26P
The curved arrow and the product formed in the given nucleophilic addition step is drawn as:
Explanation of Solution
In the given nucleophilic addition step is:
In the above step,
Thus, the curved arrows for the given nucleophilic addition step are drawn as:
The new bond in the product is formed between the electron rich C atom from the nucleophile and the electron poor C atom of the carbonyl group.
Curved arrow represents the flow of electrons from electron rich site to electron poor site.
Want to see more full solutions like this?
Chapter 7 Solutions
EBK ORGANIC CHEMISTRY: PRINCIPLES AND M
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
