
College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 6MCP
Two identical objects are pressed against two different springs so that each spring stores 50 J of potential energy. The objects are then released from rest. One spring is quite stiff (hard to compress), while the other one is quite flexible (easy to compress). Which of the following statements is or are true? (More than one statement may be true.)
- A. Both objects will have the same maximum speed after being released.
- B. The object pressed against the stiff spring will gain more kinetic energy than the other object.
- C. Both springs are initially compressed by the same amount.
- D. The stiff spring has a larger spring constant than the flexible spring.
- E. The flexible spring must have been compressed more than the stiff spring.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Three carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1
v1
13
m
12
mq
m3
(a) Find the final velocity of the train of three carts.
magnitude
direction
m/s
|---Select--- ☑
(b) Does your answer require that all the carts collide and stick together at the same moment?
○ Yes
Ο Νο
=
6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3
=
6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.
A girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.)
(a) Calculate the average exhaust speed of the engine (in m/s).
m/s
(b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate.
m/s
Two objects of masses m₁
0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is
compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.)
m/s
V1
V2=
m1
m/s
k
m2
a
す。
k
m2
m1
b
Chapter 7 Solutions
College Physics (10th Edition)
Ch. 7 - A box is pushed across a rough horizontal surface...Ch. 7 - Can the total work done on an object during a...Ch. 7 - True or false? If hydrogen molecules and oxygen...Ch. 7 - An elevator is hoisted by its cables at constant...Ch. 7 - A satellite moves in a circular orbit at a...Ch. 7 - If a projectile is fired upward at various angles...Ch. 7 - A block is initially traveling at a speed vc at...Ch. 7 - An advertisment for a portable electrical a...Ch. 7 - A child can slide down any of the three slides...Ch. 7 - Hydroelectric energy comes from gravity pulling...
Ch. 7 - Does the kinetic energy of a car change more when...Ch. 7 - When you jump from the ground into the air, where...Ch. 7 - Two unequal masses are connected by a massless...Ch. 7 - On your electric bill, you are charged for...Ch. 7 - In Figure 7.42, two blocks with masses mA and mB,...Ch. 7 - A car is initially traveling at a speed of v0....Ch. 7 - A spiral spring is compressed so as to add U units...Ch. 7 - You slam on the brakes of your car in a panic and...Ch. 7 - Consider two frictionless inclined planes with the...Ch. 7 - A brick is dropped from the top of a building...Ch. 7 - Prob. 5MCPCh. 7 - Two identical objects are pressed against two...Ch. 7 - For each of two objects with different masses, the...Ch. 7 - Two objects with unequal masses are released from...Ch. 7 - Spring #1 has a force constant of k, and spring #2...Ch. 7 - Two balls having different masses reach the same...Ch. 7 - A fisherman reels in 12.0 m of line while landing...Ch. 7 - A tennis player hits a 58.0 g tennis ball so that...Ch. 7 - A boat with a horizontal tow rope pulls a water...Ch. 7 - A constant horizontal pull of 8.50 N drags a box...Ch. 7 - A rope is tied to a box and used to pull the box...Ch. 7 - A 128.0 N carton is pulled up a frictionless...Ch. 7 - A factory worker moves a 30.0 kg crate a distance...Ch. 7 - An 8.00 kg package in a mail-sorting room slides...Ch. 7 - A tow truck pulls a car 5.00 km along a horizontal...Ch. 7 - A 60 kg woman steps onto an up-going escalator,...Ch. 7 - A bullet is fired into a large stationary absorber...Ch. 7 - Animal energy. Adult cheetahs, the fastest of the...Ch. 7 - A 0.145 kg baseball leaves a pitchers hand at a...Ch. 7 - A 1.50 kg book is sliding along a rough horizontal...Ch. 7 - Stopping distance of a car. The driver of an 1800...Ch. 7 - You throw a 20 N rock into the air from ground...Ch. 7 - Fleas are agile, wingless insects that feed on the...Ch. 7 - A 61 kg skier on level snow coasts 184 m to a stop...Ch. 7 - A block of ice with mass 2.00 kg slides 0.750 m...Ch. 7 - To stretch a certain spring by 2.5 cm from its...Ch. 7 - A spring is 17.0 cm long when it is lying on a...Ch. 7 - A spring with spring constant 100 N/m and...Ch. 7 - The graph in Figure 7.440 shows the magnitude of...Ch. 7 - A 575 N woman climbs a staircase that rises at 53...Ch. 7 - How high can we jump? The maximum height a typical...Ch. 7 - A 72.0 kg swimmer jumps into the old swimming hole...Ch. 7 - A 2.50 kg mass is pushed against a horizontal...Ch. 7 - A force of magnitude 800.0 N stretches a certain...Ch. 7 - Tendons. Tendons are strong elastic fibers that...Ch. 7 - A certain spring stores 10.0 J of potential energy...Ch. 7 - A 0.5 kg ball is thrown up into the air with an...Ch. 7 - Food calories. The food calorie, equal to 4186 J,...Ch. 7 - A good workout. You overindulged in a delicious...Ch. 7 - An exercise program. A 75 kg person is put on an...Ch. 7 - Tall Pacific Coast redwood trees (Sequoia...Ch. 7 - The total height of Yosemite Falls is 2425 ft. (a)...Ch. 7 - The speed of hailstones. Although the altitude may...Ch. 7 - Prob. 38PCh. 7 - Volcanoes on lo. lo, a satellite of Jupiter, is...Ch. 7 - Human energy vs. insect energy. For its size, the...Ch. 7 - A 25 kg child plays on a swing having support...Ch. 7 - A slingshot obeying Hookes law is used to launch...Ch. 7 - A spring with spring constant k is anchored to the...Ch. 7 - A 1.5 kg box moves back and forth on a horizontal...Ch. 7 - A 12.0 N package of whole wheat flour is suddenly...Ch. 7 - A spring of negligible mass has force constant k =...Ch. 7 - A 1.50 kg brick is sliding along on a rough...Ch. 7 - A fun-loving 11.4 kg otter slides up a hill and...Ch. 7 - A 12.0 g plastic ball is dropped from a height of...Ch. 7 - You are rearranging the furniture in your living...Ch. 7 - While a roofer is working on a roof that slants at...Ch. 7 - A block with mass 0.50 kg is forced against a...Ch. 7 - A loaded 375 kg toboggan is traveling on smooth...Ch. 7 - A 62.0 kg skier is moving at 6.50 m/s on a...Ch. 7 - Suppose you were to drop a 14 lb bowling ball from...Ch. 7 - The engine of a motorboat delivers 30.0 kW to the...Ch. 7 - Prob. 57PCh. 7 - A tandem (two-person) bicycle team must overcome a...Ch. 7 - An elevator has mass 600 kg, not including...Ch. 7 - U.S. power use. The total consumption of...Ch. 7 - Solar energy. The sun transfers energy to the...Ch. 7 - A 20.0 kg box is pulled along a rough horizontal...Ch. 7 - A typical flying insect applies an average force...Ch. 7 - When its 75 kW (100 hp) engine is generating full...Ch. 7 - The power of the human heart. The human heart is a...Ch. 7 - At the site of a wind farm in North Dakota, the...Ch. 7 - A physics student measures the energy stored in a...Ch. 7 - Human terminal velocity. By landing properly and...Ch. 7 - A wooden rod of negligible mass and length 80.0 cm...Ch. 7 - Ski jump ramp. You are designing a ski jump ramp...Ch. 7 - Rescue. Your friend (mass 65.0 kg) is standing on...Ch. 7 - On an essentially frictionless horizontal...Ch. 7 - Pendulum. A small 0.12 kg metal ball is tied to a...Ch. 7 - A pump is required to lift 750 liters of water per...Ch. 7 - A 350 kg roller coaster starts from rest at point...Ch. 7 - In action movies there are often chase scenes in...Ch. 7 - In creating his definition of horsepower, James...Ch. 7 - All birds, independent of their size, must...Ch. 7 - A 250 g object on a frictionless, horizontal lab...Ch. 7 - Bungee jump. A bungee cord is 30.0 m long and,...Ch. 7 - Riding a loop-the-loop. A car in an amusement park...Ch. 7 - A 2.0 kg piece of wood slides on the surface shown...Ch. 7 - A 68 kg skier approaches the foot of a hill with a...Ch. 7 - Energy requirements of the body. A 70 kg human...Ch. 7 - The aircraft carrier USS George Washington has...Ch. 7 - A ball is thrown upward with an initial velocity...Ch. 7 - Automotive power. A truck engine transmits 28.0 kW...Ch. 7 - Prob. 88PPCh. 7 - Prob. 89PPCh. 7 - How many times greater is the kinetic energy of...Ch. 7 - During the calibration process, the cantilever is...Ch. 7 - A segment of DNA is put in place and stretched....Ch. 7 - Based on Figure 7.52, how much elastic potential...Ch. 7 - The stage moves at a constant speed while...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In rabbits, chocolate-colored fur (w+) is dominant to white fur (w), straight fur (c+) is dominant to curly fur...
Genetic Analysis: An Integrated Approach (3rd Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Thiols such as ethanethiol and propanethiol can be used to reduce vitamin K epoxide to vitamin KH2, but they re...
Organic Chemistry (8th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Sand from a stationary hopper falls on a moving conveyor belt at the rate of 4.90 kg/s as shown in the figure below. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.710 m/s under the action of a constant horizontal external force F by the motor that drives the belt. Fext i (a) Find the sand's rate of change of momentum in the horizontal direction. (b) Find the force of friction exerted by the belt on the sand. (c) Find the external force ext' (d) Find the work done by F in 1 s. ext (e) Find the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. ext suppliedarrow_forwardAn unstable atomic nucleus of mass 1.84 × 10-26 kg initially at rest disintegrates into three particles. One of the particles, of mass 5.14 × 10-27 kg, moves in the y direction with a speed of 6.00 × 106 m/s. Another particle, of mass 8.46 × 10-27 kg, moves in the x direction with a speed of 4.00 x 106 m/s. (a) Find the velocity of the third particle. |Î + i) m/s (b) Find the total kinetic energy increase in the process. ]arrow_forwardTwo gliders are set in motion on an air track. A light spring of force constant k is attached to the back end of the second glider. As shown in the figure below, the first glider, of mass m₁, moves to the right with a speed V₁, and the second glider, of mass m₂, moves more slowly to the right with a speed, V2. VI m2 i When m₁ collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of V1, V2, m₁, m2, and k, find the following. (Use any variable or symbol stated above as necessary.) (a) speed v at maximum compression V = (b) the maximum compression Xmax Xmax = (c) the speed of each glider after m₁ V1f = has lost contact with the spring (Use any variable or symbol stated above as necessary.) V2farrow_forward
- As shown below, a bullet of mass m and speed v is fired at an initially stationary pendulum bob. The bullet goes through the bob, and exits with a speed of pendulum bob will barely swing through a complete vertical circle? (Use the following as necessary: m, L, g, and M for the mass of the bob.) 2 The pendulum bob is attached to a rigid pole of length L and negligible mass. What is the minimum value of v such that the V = L m M v/2 iarrow_forwardAs shown in the figure, a billiard ball with mass m₂ is initially at rest on a horizontal, frictionless table. A second billiard ball with mass m₁ moving with a speed 2.00 m/s, collides with m2. Assume m₁ moves initially along the +x-axis. After the collision, m₁ moves with speed 1.00 m/s at an angle of 0 = 48.0° to the positive x-axis. (Assume m₁ = 0.200 kg and m₂ = 0.300 kg.) m₁ Before the collision Vli After the collision Mi sin 9 Jif "If cos Vof COS U2f sin o Mo b (a) Determine the speed (in m/s) of the 0.300 kg ball after the collision. m/s (b) Find the fraction of kinetic energy transferred away or transformed to other forms of energy in the collision. |AKI K;arrow_forwardA block with mass m₁ = 0.600 kg is released from rest on a frictionless track at a distance h₁ = 2.55 m above the top of a table. It then collides elastically with an object having mass m₂ = 1.20 kg that is initially at rest on the table, as shown in the figure below. h₁ իջ m m2 (a) Determine the velocities of the two objects just after the collision. (Assume the positive direction is to the right. Indicate the direction with the signs of your answers.) V1= m/s m/s (b) How high up the track does the 0.600-kg object travel back after the collision? m (c) How far away from the bottom of the table does the 1.20-kg object land, given that the height of the table is h₂ = 1.75 m? m (d) How far away from the bottom of the table does the 0.600-kg object eventually land? marrow_forward
- An estimated force-time curve for a baseball struck by a bat is shown in the figure below. Let F F(N) Fmax TÀ 0 t (ms) 0 la (a) the magnitude of the impulse delivered to the ball N.S (b) the average force exerted on the ball KN = 17,000 N, t = max a 1.5 ms, and t₁ = 2 ms. From this curve, determine the following.arrow_forwardThere are many well-documented cases of people surviving falls from heights greater than 20.0 m. In one such case, a 55.0 kg woman survived a fall from a 10th floor balcony, 29.0 m above the ground, onto the garden below, where the soil had been turned in preparation for planting. Because of the "give" in the soil, which the woman compressed a distance of 15.0 cm upon impact, she survived the fall and was only briefly hospitalized. (a) Ignoring air resistance, what was her impact speed with the ground (in m/s)? m/s (b) What was the magnitude of her deceleration during the impact in terms of g? g (c) Assuming a constant acceleration, what was the time interval (in s) during which the soil brought her to a stop? S (d) What was the magnitude of the impulse (in N⚫ s) felt by the woman during impact? N⚫s (e) What was the magnitude of the average force (in N) felt by the woman during impact? Narrow_forwardExample Two charges, one with +10 μC of charge, and another with - 7.0 μC of charge are placed in line with each other and held at a fixed distance of 0.45 m. Where can you put a 3rd charge of +5 μC, so that the net force on the 3rd charge is zero?arrow_forward
- * Coulomb's Law Example Three charges are positioned as seen below. Charge 1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is - 6.0MC. What is the magnitude and the direction of the force on charge 2 due to charges 1 and 3? 93 kq92 F == 2 r13 = 0.090m 91 r12 = 0.12m 92 Coulomb's Constant: k = 8.99x10+9 Nm²/C² ✓arrow_forwardMake sure to draw a Free Body Diagram as wellarrow_forwardMake sure to draw a Free Body Diagram as wellarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY