Human terminal velocity. By landing properly and on soft ground (and by being lucky!), humans have survived falls from airplanes when, for example, a parachute failed to open, with astonishingly little injury. Without a parachute, a typical human eventually reaches a terminal velocity of about 62 m/s. Suppose the tail is from an airplane 1000 m high. (a) How fast would a person be falling when he reached the ground if there were no air drag? (b) If a 70 kg person reaches the ground traveling at the terminal velocity of 62 m/s, how much mechanical energy was lost during the fall? What happened to that energy?
Human terminal velocity. By landing properly and on soft ground (and by being lucky!), humans have survived falls from airplanes when, for example, a parachute failed to open, with astonishingly little injury. Without a parachute, a typical human eventually reaches a terminal velocity of about 62 m/s. Suppose the tail is from an airplane 1000 m high. (a) How fast would a person be falling when he reached the ground if there were no air drag? (b) If a 70 kg person reaches the ground traveling at the terminal velocity of 62 m/s, how much mechanical energy was lost during the fall? What happened to that energy?
Human terminal velocity. By landing properly and on soft ground (and by being lucky!), humans have survived falls from airplanes when, for example, a parachute failed to open, with astonishingly little injury. Without a parachute, a typical human eventually reaches a terminal velocity of about 62 m/s. Suppose the tail is from an airplane 1000 m high. (a) How fast would a person be falling when he reached the ground if there were no air drag? (b) If a 70 kg person reaches the ground traveling at the terminal velocity of 62 m/s, how much mechanical energy was lost during the fall? What happened to that energy?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY