Concept explainers
Interpretation:
The following equations need to be balanced:
Concept Introduction:
- A
chemical reaction is expressed as a chemical equation having reactants and products on left and right side of the reaction arrow respectively. - A balanced chemical equation is one in which the number of atoms of various elements on the reactants side is equal to that on the product side. It depicts the stoichiometry of a given reaction.
- The equations are balanced in two steps:
1) Balance the atoms by matching the number of atoms of each type on the reactants and product side.
2) Adjust the coefficients to the smallest whole number. A coefficient of '1' is implied and therefore not explicitly written.
Answer to Problem 45A
Explanation of Solution
1) The first equation involves the reaction of solid iron oxide with hydrogen gas to form elemental iron and water vapor. The reactants and products are:
Reactants:
Products:
Unbalanced equation:
The above equation is not balanced since the number of atoms of Fe and O on the reactant side is3 and 4 respectively while it is one each on the products side. In order to balance the above equation, multiply both H2 and H2O by 4 and Fe by 3 to get:
2) The second equation involves the reaction of solid iron oxide with carbon monoxide gas to form elemental iron and carbon dioxide. The reactants and products are:
Reactants:
Products:
Unbalanced equation:
The above equation is not balanced since the number of atoms of Fe and O on the reactant side is 3 and 5 respectively while on the products side it is 1 and 2 respectively. In order to balance the above equation, multiply both CO and CO2 by 4 and Fe by 3 to get:
Therefore, the balanced equations are:
Chapter 7 Solutions
World of Chemistry, 3rd edition
- need help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardInfluence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardThe name of the following molecule is: Νarrow_forward
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY