Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 32E
The valence electron configurations of several atoms are shown below. How many bonds can each atom make without hybridization?
- B 2s22p1
- N 2s22p3
- O 2s22p4
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
O ELECTRONIC STRUCTURE AND CHEMICAL BONDING
Counting sigma and pi bonds in a small molecule
Answer the questions below about the highlighted atom in this Lewis structure:
H
1
H-C-C=C-H
I
H
In how many sigma bonds does the highlighted atom
participate?
In how many pi bonds does the highlighted atom participate?
What is the orbital hybridization of the highlighted atom?
៣
0
0
×
Ś
=
O ELECTRONIC STRUCTURE AND CHEMICAL BONDING
Counting sigma and pi bonds in a small molecule
Answer the questions below about the highlighted atom in this Lewis structure:
H
I
HIC C=C-H
I
|
H H
H
In how many sigma bonds does the highlighted atom
participate?
In how many pi bonds does the highlighted atom participate?
What is the orbital hybridization of the highlighted atom?
X
S
Molecule or
Polyatomic
HOCN
CH3COOH
Lewis structure
H¬O¬C=N :
H-C
-0-H
Hybrid-
ization
AXE
sp³
AX₂E₂
sp
AX₂
sp³
AX4
2
sp²
AX3
3
Sp³
AX₂E2
Electron pair geometry
Molecular shape
tetrahedral
bent
linear
linear
tetrahedral
tetrahedral
trigonal planar
trigonal planar
tetrahedral
bent
Bond angles
H-O-C1
~109.5°
O-C-N
180°
H-C-H
~109.5°
H-C-C
~109.5°
C-C-O
120°
O-C-O
120°
C-O-H
109.5°
Bond
Polarity
Molecular Polarity
if the molecule is polar, add a dipole arrow
if not polar, state so and why
H
H.
;0-C=N
HH
i
H
Chapter 7 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 7 - Determine the hybridization about 0 in CH3OH.Ch. 7 - Determine the hybridization about C in H2CO.Ch. 7 - According to the valance bond theory, which kind...Ch. 7 - Use molecular orbital theory to determine the bond...Ch. 7 - Use molecular orbital theory to predict which...Ch. 7 - Use molecular orbital theory to determine which...Ch. 7 - Which hybridization scheme occurs about nitrogen...Ch. 7 - Prob. 8SAQCh. 7 - Prob. 9SAQCh. 7 - Prob. 10SAQ
Ch. 7 - Which type of orbitals overlap to form the sigma...Ch. 7 - Prob. 12SAQCh. 7 - Prob. 1ECh. 7 - What is a chemical bond according to valence bond...Ch. 7 - In valence bond theory, what determines the...Ch. 7 - In valence bond theory, the interaction energy...Ch. 7 - What is hybridization? Why is hybridization...Ch. 7 - How does hybridization of the atomic orbitals in...Ch. 7 - How is the number of hybrid orbitals related to...Ch. 7 - Sketch each hybrid orbital sp sp2 sp3 sp3d sp3d2Ch. 7 - Prob. 9ECh. 7 - Name the hybridization scheme that corresponds to...Ch. 7 - What is a chemical bond according to molecular...Ch. 7 - Explain the difference between hybrid atomic...Ch. 7 - What is a bonding molecular orbital?Ch. 7 - Prob. 14ECh. 7 - What is the role of wave interference in...Ch. 7 - Prob. 16ECh. 7 - Prob. 17ECh. 7 - Prob. 18ECh. 7 - Prob. 19ECh. 7 - Prob. 20ECh. 7 - Prob. 21ECh. 7 - When applying molecular orbital theory to...Ch. 7 - In molecular orbital theory, what is a nonbonding...Ch. 7 - Write a short paragraph describing chemical...Ch. 7 - Prob. 25ECh. 7 - Prob. 26ECh. 7 - Prob. 27ECh. 7 - Prob. 28ECh. 7 - Prob. 29ECh. 7 - Prob. 30ECh. 7 - The valence electron configurations of several...Ch. 7 - The valence electron configurations of several...Ch. 7 - Draw orbital diagrams (boxes with arrows in them)...Ch. 7 - Draw orbital diagrams (boxes with arrows in them)...Ch. 7 - Prob. 35ECh. 7 - Draw orbital diagrams (boxes with arrows in them)...Ch. 7 - Which hybridization scheme allows the formation of...Ch. 7 - Which hybridization scheme allows the central atom...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Write a hybridization and bonding scheme for each...Ch. 7 - Consider the structure of the amino acid alanine...Ch. 7 - Consider the structure of the amino acid aspartic...Ch. 7 - Sketch the bonding molecular orbital that results...Ch. 7 - Sketch the antibonding molecular orbital that...Ch. 7 - Draw an MO energy diagram and predict the bond...Ch. 7 - Draw an MO energy diagram and predict the bond...Ch. 7 - Sketch the bonding and antibonding molecular...Ch. 7 - Sketch the bonding and antibonding molecular...Ch. 7 - Using the molecular orbital energy ordenng for...Ch. 7 - Using the molecular orbital energy ordering for...Ch. 7 - Apply molecular orbital theory to predict if each...Ch. 7 - Apply molecular orbital theory to predict if each...Ch. 7 - According to MO theory, which molecule or ion has...Ch. 7 - According to MO theory, which molecule or ion has...Ch. 7 - Draw an MO energy diagram for CO. (Use the energy...Ch. 7 - Draw an MO energy diagram for HCI. Predict the...Ch. 7 - Prob. 61ECh. 7 - Prob. 62ECh. 7 - Prob. 63ECh. 7 - Prob. 64ECh. 7 - Prob. 65ECh. 7 - Prob. 66ECh. 7 - For each compound, draw the Lewis structure,...Ch. 7 - For each compound, draw the Lewis structure,...Ch. 7 - Amino acids are biological compounds that link...Ch. 7 - The genetic code is based on four different bases...Ch. 7 - The structure of caffeine, present in coffee and...Ch. 7 - The structure of acetylsalicylic acid (aspirin) is...Ch. 7 - Draw a molecular orbital energy diagram for CIF....Ch. 7 - Draw Lewis structures and MO diagrams for CN+, CN,...Ch. 7 - Bromine can form compounds or ions with any number...Ch. 7 - The compound C3H4 has two double bonds. Describe...Ch. 7 - How many hybrid orbitals do we use to describe...Ch. 7 - Prob. 78ECh. 7 - In VSEPR theory, which uses the Lewis model to...Ch. 7 - The resuts of a molecular orbital calculation for...Ch. 7 - Prob. 81ECh. 7 - cis-2-Butene isomerizes (changes its structure) to...Ch. 7 - The ion CH5 + can form under very special...Ch. 7 - Neither the VSEPR model nor the hybridization...Ch. 7 - Prob. 85ECh. 7 - The most stable forms of the nonmetals in groups...Ch. 7 - Consider the bond energies of three iodine...Ch. 7 - How many atomic orbitals form a set of sp3hybrid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- It is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardPredict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions. (a) Na,2+ (b) Mg,2 (c) AI,2 (d) Si,2 (e) p2+ (f) s,2 (g) F,2 (h) Ar,2 40. Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions. (a) Na22+ (b) Mg22+ (c) Al22+ (d) Si22+ (e) P22+ (f) S22+ (g) F22+ (h) Ar22+arrow_forwardUse Lewis structures and VSEPR theory to predict the electron-region and molecular geometries of (a) PSCl3. (b) SOF6. (c) [S2O4]2. (d) [TeF4]2. Note any differences between these geometries.arrow_forward
- FClO2 and F3ClO can both gain a fluoride ion to form stable anions. F3ClO and F3ClO2 will both lose a fluoride ion to form stable cations. Draw the Lewis structures and describe the hybrid orbitals used by chlorine in these ions.arrow_forwardDescribe the molecular orbital configurations of C2, C2, and C22. What are the bond orders of these species? Arrange the three species by increasing bond length. Arrange the species by increasing bond enthalpy. Explain these arrangements of bond length and bond enthalpy.arrow_forwardIn each of the following polyatomic ions, the central atom has an expanded octet. Determine the number of electron pairs around the central atom and the hybridization in (a) SF22- (b) AsCl6- (c) SCl42-arrow_forward
- For each of the following molecules, state the bond angle (or bond angles, as appropriate) that you would expect to see on the central atom based on the simple VSEPR model. Would you expect the actual bond angles to be greater or less than this? a CCl4 b SCl2 c COCl2 d AsH3arrow_forwardPredict the geometry of the following species: (a) SO2 (b) BeF2 (c) SeCl4 (d) Pcl5arrow_forwardGive all the ideal bond angles (109.5, 120, or 180) in the following molecules and ions. (The skeleton does not imply geometry.) (a) Cl—S—Cl(b) F—Xe—F(c) (d)arrow_forward
- Predict the molecular structure, bond angles, and polarity (has a net dipole moment or has no net dipole moment) for each of the following compounds. a. SeCl4 b. SF2 c. KrF4 d. CBr4 e. IF3 f. ClF5arrow_forwardIndicate which of the following molecules are polar. Draw the molecular structure of each polar molecule, including the arrows that indicate the bond dipoles and the molecular dipole moment. (a) HCN (b) I2 (c) NOarrow_forwardIn each of the following molecules, a central atom is surrounded by a total of three atoms or unshared electron pairs: SnCl2, BCl3, SO2. In which of these molecules would you expect the bond angle to be less than 120? Explain your reasoning.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY